EPSRC logo

Details of Grant 

EPSRC Reference: EP/N008154/1
Title: Redrawing the boundaries: new approaches to many-body open quantum systems
Principal Investigator: Nazir, Dr A
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Swinburne University of Technology University of Bristol
Department: Physics and Astronomy
Organisation: University of Manchester, The
Scheme: EPSRC Fellowship
Starts: 01 February 2016 Ends: 31 January 2021 Value (£): 866,380
EPSRC Research Topic Classifications:
Condensed Matter Physics Mathematical Physics
Quantum Fluids & Solids Quantum Optics & Information
EPSRC Industrial Sector Classifications:
Communications Electronics
Related Grants:
Panel History:
Panel DatePanel NameOutcome
09 Sep 2015 EPSRC Physical Sciences Fellowships Interview Panel 9, 10 and 11 Sept 2015 Announced
22 Jul 2015 EPSRC Physical Sciences Physics - July 2015 Announced
Summary on Grant Application Form
I propose a new perspective and approach to understanding the interactions and interplay between quantum systems and their surrounding environments. By redrawing the boundary between what we term the system and what we term the environment, I shall provide a unified framework that will permit a breakthrough in the analysis of larger and more complex systems than presently possible. This will result in important new insights into both fundamental and applied physics across numerous settings.

The behaviour of nanoscale systems comprising up to several thousand atoms is dominated by quantum physics, which can lead to surprisingly strong collective features. As an analogy, consider the cooperative behaviour of a crowd at a sports ground who sing in unison, allowing songs to be discerned despite the many voices. Likewise, in nanoscale systems quantum correlations can be shared across numerous constituent atoms, enabling them to behave as single entities in many situations. One of the most dynamic and exciting areas of scientific research over the past decade has been the quest to understand, control, and exploit these correlations for technological applications. Further progress in the field - which could lead to the next technological revolution - requires the development of an unprecedented level of understanding of the intricate quantum nature of matter. This is a formidable challenge, but also a central reason to engage in this fascinating area of research.

A primary obstacle to exploiting quantum features of nanoscale systems arises due to the fact that no physical system can ever be completely isolated from the influence of its surroundings. The forces exerted by this large, fluctuating, and uncontrolled environment give rise to unwanted random variations in the system's properties, known as noise. Returning to our analogy, this is akin to each crowd member randomly singing a song with no regard to the songs of others, with the result (which would literally be noise!) that a listener would perceive no underlying structure.

In the quantum realm noisy processes are particularly harmful. As well as obscuring the information we learn as we probe a system, interactions with the environment can destroy the very nature of the quantum state itself. From a quantum technology point of view, noise thus seems to render our system to be completely useless.

This is the conventional view, at least. However, one of the exciting aims of my research programme is to give a viable alternative perspective on the role of noise in quantum processes. Imagine a crowd in which groups are singing different songs. Depending on how these groups form, compete, and evolve we may still perceive some structure beneath the din. In fact, by developing a new and unified understanding of the interactions between quantum systems and their environments I shall show that noisy processes can actually be harnessed to drive systems into exotic, robust, and useful quantum states.

Indeed, a series of groundbreaking experiments have suggested that interplay between quantum effects and noise may unexpectedly exist in the natural light-harvesting networks of bacteria, algae, and plants. These systems are thus currently the subject of intense exploration and debate, motivated by the remarkable possibility that quantum physics may play an important role in the basic processes of life. Moreover, by understanding whether this helps natural systems to achieve robust and efficient solar-energy conversion, I aim to develop new design principles for quantum technologies that draw on solar light as a clean, sustainable, and efficient energy source.

By tackling a core issue in quantum physics and a primary obstacle to exploiting quantum processes in the laboratory, my research will impact across a broad range of fields and technologies, paving the way to future applications of far-reaching social and economic importance as well.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.man.ac.uk