EPSRC logo

Details of Grant 

EPSRC Reference: EP/M027066/1
Title: DESIGNING NANOPOROUS CARBONS AS ANODE MATERIALS FOR SODIUM ION BATTERIES
Principal Investigator: Cai, Dr Q
Other Investigators:
Researcher Co-Investigators:
Project Partners:
CIC energigune Johnson Matthey Queen Mary University of London
Department: Chemical Engineering
Organisation: University of Surrey
Scheme: First Grant - Revised 2009
Starts: 01 August 2015 Ends: 31 January 2017 Value (£): 99,085
EPSRC Research Topic Classifications:
Energy Storage
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
22 Apr 2015 Engineering Prioritisation Panel Meeting 22nd April 2015 Announced
Summary on Grant Application Form
The UK faces the challenge to store energy from grid electricity generation (the current storage capacity is around just 3 GW, far short of the demand of around 20 GW). Greater capability (~10 GW) to store electricity will save the UK energy spend of up to £10 billion a year by 2050, and will provide flexibility for energy supply, as pointed out by the Rt Hon David Willetts MP in "Eight Great Technologies". It will also facilitate the increased use of intermittent renewable energies (such as wind, wave and tidal) on the grid to meet binding emission targets (for example, 80% CO2 reduction by 2050) and thus enable the faster transition to a low carbon society. This calls for low cost and sustainable energy storage technologies. Na ion batteries (NIBs) have recently attracted increasing interest worldwide, because of the natural abundance, wide availability and low cost of Na resources. They may be more economically viable than lithium-based batteries in the context of grid storage and can support the UK's and even the world-wide demand for electricity storage. The development of NIBs has, however, been very slow in the UK, compared to other competitors such as USA, Japan and China. This project aims to make advancements in NIBs with a focus on anode materials.

This project proposes the use of low cost and aboundant nanoporous carbons materials (particularly biomass derived carbon aerogels) as anode materials in NIBs. This proposal details a necessary step by providing a design tool for selection and optimisation of nanoporous carbons in this application. The hypothesis of the research is that computational models can be used to design desirable porous carbons for NIBs. The model development will be supported and validated by experimental activities including characterisation of real nanoporous carbons, assembly and testing of NIB cells.

Molecular models will be developed at two levels - a single pore model and a more complicated virtual porous carbon model. Hetreatoms (such as H, O, B, N, P, S) in the forms of doped atoms in the carbon lattices, and funcational groups, will be introduced, for the first time, to reflect the real atomic structures of porous carbons. Molecular simulations will be performed on the models to reveal Na ion intercalation mechanism in nanoporous carbons and the effects of pore sizes and presence of heteroatoms on the adsorption, diffusion and charge transfer processes. Desirable characteristics of porous carbons will be generated. These desirable charateristics will be used to guide the fabrication and optimisation of real nanoporous carbons.

This project is underpinned by a fully funded PhD studentship at Surrey, which will enable the prediction and the understanding from molecular simulations to be directly translated into real applications. Biomass derived nanoporous carbon aerogels, produced at Queen Mary University of London (UK), will be used to manufacture NIB cells at University of Surrey for electrochemical performance testing. Nanoporous carbons of other origin will be produced at CIC-Energigune (Spain) and used in battery cell manufacturing and testing. The project is also strongly supported by Johnson Matthey on materials characterization, battery testing, and advice on prototype opportunities.

This project is the natural result of the PI's expertise in molecular simulation, nanoporous carbon materials and electrode design for electrochemical devices. The framework of the proposed work will be underpinned by extensive energy materials characterisation expertise and infrastructure, as well as extensive expertise and facilities in battery manufacturing and testing at Surrey.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.surrey.ac.uk