EPSRC logo

Details of Grant 

EPSRC Reference: EP/M022196/1
Title: Improved surface passivation for semiconductor solar cells
Principal Investigator: Bonilla Osorio, Professor RS
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Fraunhofer Institut (Multiple, Grouped) NSG Group (UK) Oxford Instruments Plc
Solar Capture Technologies Teledyne UK Ltd
Department: Materials
Organisation: University of Oxford
Scheme: EPSRC Fellowship
Starts: 01 June 2015 Ends: 31 May 2018 Value (£): 375,603
EPSRC Research Topic Classifications:
Solar Technology
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
16 Mar 2015 Eng Fellowship Interviews Mar 2015 Announced
25 Feb 2015 Engineering Prioritisation Panel Meeting 25 February 2015 Announced
Summary on Grant Application Form
The world is currently undergoing one of the biggest transformations in energy usage since the industrial revolution. From the poorest to the richest nations, our planet has shown the consequences of climate change, and the exhaustion of some fossil fuels is now in the foreseeable future. We have started to change the way we generate, distribute and use energy throughout the world. Solar power is one of the most environmentally favourable sources, which in principle could provide all the energy required for the planet. Solar cells use the photovoltaic effect to convert solar energy to usable electrical energy, and thus are a key technology to provide the world with renewable, inexpensive and reliable electricity. Photovoltaics research and industry have experienced enormous advancements in the last two decades. The most important material by far in the photovoltaics field is silicon. Silicon today accounts for over 85 % of the photovoltaics market, and has over 140 GW of installed capacity. Current silicon solar cell systems have an energy payback time of only 2-4 years with 30-years lifetime. Their cost of power generation is now falling below 0.5 $/W, and in some areas of the world they are already cost effective for supplying grid electricity. Silicon photovoltaics is therefore an extremely promising technology where significant technological improvements are still possible which will ensure further price reductions and increased deployment.

Silicon solar cells capture solar energy when light is absorbed near the cell's surface and it creates electrical charge carriers. These carriers then diffuse through the cell, get collected at one of the contacts and are then able to deliver electricity. In this process many carriers are lost due to the imperfections of the material. The conversion efficiency of a solar cell is therefore limited by this loss of charge carriers at imperfections and defects. The surface of the cell represents a major material defect. The reduction of charge loss at the surface, termed passivation, is hence a critical feature requiring improvement. This project aims to improve the efficiency of silicon solar cells by optimising passivation using the cost-effective technologies proposed and patented as part of my previous research work. It is rare that a newly proposed technique could produce a step-change in the efficiency of passivation in commercial solar cells. This grant application will specifically enable that step-change to be developed. My research programme includes the fabrication, processing and characterisation of different passivation coatings used in solar cell manufacture. Different methods of producing the coatings and enhancing their passivation properties will be studied. Techniques to deposit the coating will include chemical and physical vapour deposition. In each case the key importance will be the characteristics of the layer with respect to storing excess electric charge that will be especially introduced. The research will be carried out at the Oxford Materials department, in close partnership with four UK manufacturing companies and a leading overseas research centre, the Fraunhofer Institute for Solar Energy Systems ISE. This institute will provide processing and characterisation facilities, staff time and state-of-the-art custom-made solar cells, and will also help interface the outcomes of this collaboration to the solar cell industry worldwide. Overall, this project will combine a strong team of academics and industry to improve efficiency and reduce the cost of semiconductor solar cells, thus paving the way for wide deployment and uptake of a technology with the potential to provide the world with abundant renewable and reliable energy.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.ox.ac.uk