EPSRC logo

Details of Grant 

EPSRC Reference: EP/M015661/2
Title: Adaptive Automated Scientific Laboratory
Principal Investigator: Soldatova, Professor L
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Computing Department
Organisation: Goldsmiths College
Scheme: Standard Research - NR1
Starts: 01 November 2017 Ends: 30 June 2018 Value (£): 54,460
EPSRC Research Topic Classifications:
Artificial Intelligence Bioinformatics
Human-Computer Interactions Information & Knowledge Mgmt
Robotics & Autonomy
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
EP/M015688/1
Panel History:  
Summary on Grant Application Form
Our proposal integrates the scientific method with 21st century automation technology, with the goal of making scientific discovery more efficient (cheaper, faster, better). A "Robot Scientist" is a physically implemented laboratory automation system that exploits techniques from the field of artificial intelligence to execute cycles of scientific experimentation. Our vision is that within 10 years many scientific discoveries will be made by teams of human and robot scientists, and that such collaborations between human and robot scientists will produce scientific knowledge more efficiently than either could alone. In this way the productivity of science will be increased, leading to societal benefits: better food security, better medicines, etc. The Physics Nobel Laureate Frank Wilczek has predicted that the best scientist in one hundred years time will be a machine. The proposed project aims to take that prediction several steps closer.

We will develop the AdaLab (an Adaptive Automated Scientific Laboratory) framework for semi-automated and automated knowledge discovery by teams of human and robot scientists. This framework will integrate and advance a number of ICT methodologies: knowledge representation, ontology engineering, semantic technologies, machine learning, bioinformatics, and automated experimentation (robot scientists). We will evaluate the AdaLab framework on an important real-world application in cell biology with biomedical relevance to cancer and ageing. The core of AdaLab will be generic.

The expected project outputs include:

- An AdaLab demonstrated to be greater than 20% more efficient at discovering scientific knowledge (within a limited scientific domain) than human scientists alone.

- A novel ontology for modelling uncertain knowledge that supports all aspects of the proposed AdaLab framework.

- The first ever communication mechanism between human and robot scientists that standardises modes of communication, information exchange protocols, and the content of typical messages.

- New machine learning methods for the generation and efficient testing of complex scientific hypotheses that are twice as efficient at selecting experiments as the best current methods.

- A significant advance in the state-of-the-art in automating scientific discovery that demonstrates its scalability to problems an order of magnitude more complex than currently possible.

- Novel biomedical knowledge about cell biology relevant to cancer and ageing.

- A strengthened interdisciplinary research community that crosses the boundaries between multiple ICT disciplines, laboratory automation, and biology.

All outputs produced by the project will be made publicly available by the end of the project.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.gold.ac.uk