EPSRC logo

Details of Grant 

EPSRC Reference: EP/M014088/1
Title: High Speed, Energy Efficient Manufacturing of Cadmium Telluride Solar Cells
Principal Investigator: Woolley, Dr E
Other Investigators:
Claudio, Dr G Tyrer, Professor JR
Researcher Co-Investigators:
Project Partners:
Power Vision Limited
Department: Wolfson Sch of Mech, Elec & Manufac Eng
Organisation: Loughborough University
Scheme: Standard Research - NR1
Starts: 05 January 2015 Ends: 30 September 2016 Value (£): 282,948
EPSRC Research Topic Classifications:
Energy Efficiency Manufacturing Machine & Plant
Solar Technology
EPSRC Industrial Sector Classifications:
Manufacturing
Related Grants:
Panel History:
Panel DatePanel NameOutcome
03 Sep 2014 ERM Interviews Panel 1 Announced
Summary on Grant Application Form
Photovoltaic cells (the main component of solar panels) play a large part in an international effort to improve global resilience to inevitable future energy supplies shortages from fossil based fuels. The majority of photovoltaics (PV) are currently manufactured from silicon (1st generation), but the fastest growing market share belongs to Cadmium Telluride (CdTe) thin film PV (a 2nd generation technology). Because CdTe offers many advantages over crystalline silicon such as cost, availability and weight, thin-film CdTe solar cells are the basis of a new PV technology with a major commercial impact on solar energy production.

Unfortunately, like silicon, CdTe suffers from the need for substantial energy input during manufacture which means that energy payback period is typically in excess of 2 years. This paradoxical problem with CdTe could be partly overcome if new manufacturing technologies could be developed to substantially reduce process energy and allow for the substitution of alternative materials for their construction, which also supports the objective of reducing their energy footprint.

The technological advancements to be made within this project will be based around thin film deposition techniques (sputtering) and novel heat treatment (laser annealing) of these thin film CdTe layers. These processes will be monitored in order to predict and detect faults, minimise the energy requirement and improve process speeds.

The project objectives will be reached by bringing together a number of research groups from different disciplines: sustainable manufacturing, photovoltaics and laser processing. The investigators involved from these research groups have extensive experience in their respective fields, access to extended knowledge within their groups, and world-class research facilities. These attributes alongside a carefully planned programme of work with risk management strategies will significantly contribute towards project success.

The overall impact of the proposed project in manufacturing will include: substantially reduced energy demand to produce solar panel systems; the potential to initiate UK industry for the manufacture of CdTe PV; cheaper, lighter, more versatile PV for a wide range of competitive applications; and generation of new academic and industrial knowledge in thin film deposition and laser annealing.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.lboro.ac.uk