EPSRC logo

Details of Grant 

EPSRC Reference: EP/M008983/1
Title: Metrology for precision and additive manufacturing
Principal Investigator: Leach, Professor R
Other Investigators:
Researcher Co-Investigators:
Project Partners:
3T Additive Manufacturing Ltd Alicona Imaging GmbH Bruker
Calon Cardio-Technology Ltd Harbin Institute of Technology Lein Applied Diagnostics Ltd
Loughborough University Loxham Precision M-Solv Ltd
National Physical Laboratory NPL Neuteq Europe Limited Nikon (International)
Renishaw Scitech Precision Ltd STFC Laboratories (Grouped)
Taylor Hobson Ltd The Manufacturing Technology Centre Ltd Toyota
University of Bath University of Huddersfield University of North Carolina Charlotte
Zeeko Ltd
Department: Faculty of Engineering
Organisation: University of Nottingham
Scheme: EPSRC Fellowship
Starts: 09 March 2015 Ends: 08 March 2020 Value (£): 1,237,077
EPSRC Research Topic Classifications:
Manufacturing Machine & Plant
EPSRC Industrial Sector Classifications:
Manufacturing
Related Grants:
Panel History:
Panel DatePanel NameOutcome
04 Nov 2014 Manufacturing Fellowships Interview Panel Announced
Summary on Grant Application Form
Since the beginning of humanity our societies have been based on commerce, i.e. we make things and we sell them to other people. Relatively simple beginnings led to the Industrial Revolution and now to the technological age. Over-generalising, the Far East are currently the masters of mass manufacture and the West are (or wish to be) the masters of advanced manufacture - the production of high-value goods, often involving a significant degree of innovation. To be able to manufacture goods in a cost-effective, environmentally-sustainable manner, quality control procedures are required. And quality control in turn requires an appropriate measurement infrastructure to be in place. It is a sub-set of this measurement infrastructure that is the subject of this fellowship.

The UK government has been investing heavily in advanced manufacturing. In the academic arena, there are the sixteen EPSRC Centres of Innovative Manufacturing. To ease the pain of transferring academic research to the manufacturing sector, there are the seven High-Value Manufacturing Catapults (the Manufacturing Technology Centre being the main one of note here). For industry, there are a number of funding initiatives and tax breaks. To support this burgeoning UK advanced manufacturing infrastructure, there are a small number of academic centres for metrology - those based at Huddersfield and Bath are the main players. And, at the top of the measurement tree, there is the world-class National Physical Laboratory - a centre of excellence in metrology. But, there are still some gaps in the manufacturing metrology research jigsaw, and the aim of this fellowship is to plug those gaps.

Coordinate metrology has been used for decades in the manufacturing industry as the most dominant form of process control, usually employing tactile coordinate measuring machines (CMMs). However, due to the slow speed of tactile systems and the fact that they can only take a limited amount of points, optical CMMs are starting to flourish. On the smaller scale, there are many optical surface measuring devices that tend to be used off-line in industry. When making small, high-precision, complex components, with difficult to access geometries, it is a combination of the surface measurement systems and the CMMs that is required. This requirement is one of the main aims of the fellowship - to develop a suite of fast, high-accuracy, non-contact measurement systems, which can be employed in industry. These principles will also be applied to the field of additive manufacturing - a new paradigm in manufacturing which is seeing significant government support and, in some cases, media hype. As with high-precision components, a coordinate metrology infrastructure for additive manufacturing is required, in many cases in-line to allow direct feedback to the manufacturing process. This is the second field of metrology that the fellowship will address.

The outputs of the fellowship will be in the form of academic publications; new measurement instruments, along with new ways to use existing instruments; methods to allow manufacturers to verify the performance of their instruments; and the necessary pre-normative work that will lead to specification standards in the two fields (currently lacking). The academic world will benefit from the fundamental nature of elements of the research, and the industrial manufacturing world will benefit from the techniques developed and routes to standardisation. But, ultimately, it will be the UK citizens that will reap the greatest benefit in terms of new and enhanced products, and the wealth creation potential from precision and additive manufacturing.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.nottingham.ac.uk