EPSRC logo

Details of Grant 

EPSRC Reference: EP/L000199/1
Title: A Multiscale Simulation Approach to Tackle Fuel Spray Atomisation and Combustion
Principal Investigator: Xia, Dr J
Other Investigators:
Researcher Co-Investigators:
Project Partners:
MAHLE
Department: Mech. Engineering, Aerospace & Civil Eng
Organisation: Brunel University London
Scheme: First Grant - Revised 2009
Starts: 24 March 2014 Ends: 23 March 2015 Value (£): 98,639
EPSRC Research Topic Classifications:
Combustion
EPSRC Industrial Sector Classifications:
Aerospace, Defence and Marine Energy
Transport Systems and Vehicles
Related Grants:
Panel History:
Panel DatePanel NameOutcome
25 Jun 2013 Engineering Prioritisation Meeting 25 June 2013 Announced
Summary on Grant Application Form
As the technology to generate the world's 80% power, combustion of fossil fuels will continue to play a key role in energy production over the next several decades and contributes heavily to carbon emission. In mobile internal combustion engines for road, air and water transportation and stationary gas turbines for electricity generation in power stations, the burning of fossil fuels is widely achieved by liquid fuel injection, which dictates fuel efficiency and emissions. It involves a cascade of complex multiscale, multiphysics, multiphase phenomena, and has been identified as a basic research need for these combustion devices. The need is becoming more urgent as more alternative biofuels are introduced in the fuel market, making the fuel properties more complex and the control of liquid fuel injection more difficult. Therefore, future smart engines require precise control of the injection of a broad variety of fuels that is far more subtle than what can be achieved to date.

Currently numerical research on the fuel spray process can be divided in two principal categories: (1) using an Eulerian approach to simulate primary breakup in the dense spray regime and (2) using a Lagrangian approach to simulate turbulence-combustion-droplets interaction in the dilute spray regime. However, to systematically study fuel spray atomisation and combustion cannot be achieved by either approach. To track a large amount of atomised droplets using an Eulerian approach is difficult due to the resolution requirement for small droplets and thin ligaments. For Lagrangian approaches, the widely used computational configurations are homogeneous isotropic/shear turbulence, or temporally/spatially developing mixing layers or jets laden with point-source droplets. Missing important initial conditions of the atomising spray which are determined by primary breakup in the dense spray zone, the research on spray combustion is currently in an early theoretical stage and far from the expected goal of guiding and optimising the design of fuel injection.

This project proposes an idea to bridge the gap between the two approaches to simulate fuel spray atomisation and combustion, by keeping the advantages of the two approaches and complementarily remedying their disadvantages with each other. The integrated, multiscale, hybrid Eulerian-Lagrangian simulation approach can be used to perform high-fidelity simulation of the fuel spray atomisation and combustion phenomena and investigate complex multilateral interactions among an atomising liquid-fuel jet, atomised evaporating droplets, combustion, and turbulence on current and future supercomputers.

Developing such a predictive numerical tool is an essential first step toward the goal of a complete, predictive simulation capability for the design and optimisation of fuel-efficient and clean engines. It can impact broadly the design of transportation engines including off-highway engines and help the acceleration of diverse biofuels being used in the fuel market, contributing to key emerging industries of bioenergy in the UK. A liquid spray process is also widely used in other research disciplines such as Healthcare Technologies and Advanced Manufacturing. A predictive numerical tool can contribute to improving the scientific understanding, design and control of the spray processes in these prioritised research areas.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.brunel.ac.uk