EPSRC logo

Details of Grant 

EPSRC Reference: EP/K005545/1
Title: Geometry and arithmetics through the theory of algebraic cycles
Principal Investigator: Vial, Dr C
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Pure Maths and Mathematical Statistics
Organisation: University of Cambridge
Scheme: EPSRC Fellowship
Starts: 01 April 2013 Ends: 31 March 2017 Value (£): 401,912
EPSRC Research Topic Classifications:
Algebra & Geometry
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
01 Aug 2012 EPSRC Mathematics Fellowships - August 2012 Announced
04 Jul 2012 Mathematics Prioritisation Panel Meeting July 2012 Announced
Summary on Grant Application Form
The basic objects of algebraic geometry are algebraic varieties. These are defined locally as the zero locus of polynomial equations. The main goal of algebraic geometry is to classify varieties. An approach consists in attaching invariants to varieties. Some invariants are of an arithmetic nature, e.g. the gcd of the degrees of closed points on X. Some are of a topological nature, e.g. the singular cohomology of the underlying topological space of X. Some are of a geometric nature, e.g. the Chow groups of X. A codimension-n algebraic cycle on X is a formal sum of irreducible subvarieties of codimension n and the Chow group CH^n(X) is the abelian group with basis the irreducible subvarieties of codimension n in X modulo a certain equivalence relation called rational equivalence. Roughly, rational equivalence is the finest equivalence relation on algebraic cycles that makes it possible to define unambiguously an intersection product on cycles. Moreover, the aforementioned invariants for X are encoded (or at least expected to be) in the Chow groups X. Therefore, in some sense, algebraic cycles are the finest invariants for algebraic varieties, and the theory of algebraic cycles lies at the very heart of geometry, topology and number theory.

I will integrate methods from K-theory, Galois cohomology and number theory to derive new results in the theory of algebraic cycles on varieties defined over finitely generated fields or other fields of arithmetic interest. Conversely, I will use the theory of algebraic cycles to derive new results of arithmetic

interest. In addition, the outcome of such results will shed new light on the geometry of such varieties. Thus, by its very nature, my research proposal on the theory of algebraic cycles is intradisciplinary within the mathematical sciences.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.cam.ac.uk