EPSRC logo

Details of Grant 

EPSRC Reference: EP/K002309/1
Title: Reduction of aerofoil self-noise by surface plasma technique
Principal Investigator: Chong, Dr TP
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Mech. Engineering, Aerospace & Civil Eng
Organisation: Brunel University London
Scheme: First Grant - Revised 2009
Starts: 01 October 2013 Ends: 31 August 2015 Value (£): 97,827
EPSRC Research Topic Classifications:
Acoustics Aerodynamics
EPSRC Industrial Sector Classifications:
Aerospace, Defence and Marine
Related Grants:
Panel History:
Panel DatePanel NameOutcome
09 Nov 2012 Engineering Prioritisation Meeting - 9 Nov 2012 Announced
Summary on Grant Application Form
In the aerospace industry, great emphasis is always placed on the lifting components to achieve high-lift, low-drag and low-noise performances. This proposal concerns an 18-month experimental study into the application of surface plasma actuators as an active boundary layer and wake control technique with the aim of reducing the drag and Trailing Edge self-noise of aerofoil. Two configurations will be investigated: (1) an aerofoil with blunt trailing edge - which characteristically combines a superior lift performance with high drag and significant tone noise radiation; (2) an aerofoil with a sharp trailing edge - which typically produces broadband self-noise in high Reynolds number flow. The main technology under investigation here is the relatively new, though rapidly expanding, surface plasma actuators. The usage of surface plasma actuators for flow control is very attractive for industrial applications because this technique is highly energy efficient, has a fast response, a simple structure, can be used for both steady and unsteady actuations and creates no profile drag when not in operation. The proposed research aims to simultaneously optimise the aerodynamical and aeroacoustical performances of aerofoil with blunt as well as sharp trailing edges. The expected outcome of this research is an extensive validation of the effectiveness of surface plasma actuator as a relatively novel technique for the reduction of drag and noise generated by aircraft components such as the turbofan engine and airframe. The outcome of this research is also transferable to the wind turbine industry and fan-based home appliance sector.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.brunel.ac.uk