EPSRC logo

Details of Grant 

EPSRC Reference: EP/J000396/1
Title: Transparent organic electronics based on graphene
Principal Investigator: Barnes, Professor WL
Other Investigators:
Craciun, Professor MF Russo, Professor S
Researcher Co-Investigators:
Project Partners:
Tohoku University UCL University of Bath
University of Manchester, The University of Southampton University of Tokyo
Department: Physics
Organisation: University of Exeter
Scheme: Standard Research - NR1
Starts: 01 October 2011 Ends: 30 September 2014 Value (£): 90,544
EPSRC Research Topic Classifications:
EPSRC Industrial Sector Classifications:
Related Grants:
Panel History:
Panel DatePanel NameOutcome
08 Mar 2011 Strategic Japanese-UK Cooperative Program 3rd Call Announced
Summary on Grant Application Form
Transparent organic electronic and optoelectronic devices are nowadays emerging technologies for future applications, for example in smart windows and in photovoltaic cells. The attributes of organic materials include large and ultrafast nonlinear optical responses and large colour tuneability. However, the electrical conductivity of organic materials is usually poor and this limits their utility. Here we propose to pursue a new type of organic material for such applications, a material that has a high electrical conductivity and thus has the potential to revolutionise the field: the material is graphene. This is a sheet of carbon just one atom thick, with spectacular strength, flexibility, transparency, and electrical conductivity. The proposed project is directed specifically at tuning the electronic properties of graphene in order to allow the potential of this material to be exploited in transparent electronic and optoelectronic devices. The outputs of the project, the development of graphene-based transparent devices, will be fundamental to the commercial and the economic development of transparent electronics.

So far, chemical functionalization of graphene with different molecular species revealed that each molecular specie can be used to accumulate electrons or holes in graphene ( that is n- or p-type doping of graphene). This suggests the possibility that different doping of adjacent graphene areas can be used to engineer electron/hole interfaces also known as p-n junctions, which are the core of large part of nowadays electronic devices. Other chemical species such as hydrogen and fluorine atoms attached to graphene can modify its band structure by opening a band gap in the otherwise zero-gap semimetallic material, providing the opportunity to use graphene as a truly organic semiconductor. The potential afforded by the chemical functionalization of graphene materials is still in its infancy, and it holds great promise for future integrated optoelectronics.

The tremendous advantages of integrating devices on the same chip in electronics naturally suggest that the same be done with electronic and optoelectronic devices. However, integration of optoelectronic devices has proven to be a difficult challenge because of inherent incompatibilities. For example, a light-emitting diode based on a p-n structure has a structure quite different from the structure of any transistor. The exploitation of graphene will allow this incompatibility to be transcended. Intelligent schemes of functionalization of graphene hold the promise to accomplish the patterning of transparent standard resistors, capacitors and transistor structures integrated with light-emitting and detecting devices which constitutes a fundamental step towards applications such as smart windows. This pioneering research is at the core of this proposal.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.ex.ac.uk