EPSRC logo

Details of Grant 

EPSRC Reference: EP/I036397/1
Title: In situ time-dependent characterisation of corrosion processes in nuclear waste storage and GDF environments
Principal Investigator: Davenport, Professor AJ
Other Investigators:
Scott, Professor TB Engelberg, Professor DL Rayment, Professor T
Researcher Co-Investigators:
Project Partners:
Department: Metallurgy and Materials
Organisation: University of Birmingham
Scheme: Standard Research
Starts: 01 October 2011 Ends: 30 September 2015 Value (£): 746,015
EPSRC Research Topic Classifications:
Energy - Nuclear Materials Characterisation
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
07 Mar 2011 Geological Disposal of Nuclear Waste Announced
Summary on Grant Application Form
The UK Government is committed to managing radioactive nuclear waste through long-term geological disposal with safe interim storage above ground. The waste will be stored in metal canisters, and corrosion is a key potential threat to their integrity throughout the process of above-ground storage, operation of the geological repository during emplacement of the canisters, and following its final closure. We plan to investigate the mechanisms and rates of a number of the likely corrosion processes, developing characterisation methods that will be generically useful for studying similar processes in the future.

Localised corrosion of metals takes place in wet environments, often in cavities under the metal surface. The commonest method for evaluating the total rate of corrosion or depth of penetration is to make a cross-section of the metal at the end of a corrosion process, so that any information on the time evolution of the shape or chemistry is lost. However, by using highly-intense X-rays from a synchrotron source, it is now possible to study these processes in situ in real time, since the X-rays can easily penetrate the water and metal surface. The 3D shape of the corrosion site can be determined with X-ray microtomography, and chemistry can be assessed with diffraction and spectroscopy. All of these techniques are available at Diamond, the UK's synchrotron facility. When these techniques are combined with advanced lab-based techniques, a full picture of the mechanisms and rates of corrosion processes will emerge, enabling the development and validation of corrosion prediction models underpinned with sound science that are necessary for underpinning policy decisions on nuclear waste storage.

Our project is a collaboration between researchers at the Universities of Birmingham, Manchester and Bristol and Diamond. A Research Fellow based at the Research Complex at Harwell (next to Diamond) will lead the research effort, co-ordinating the X-ray experiments of the PhD students based at each University, who will also use lab-based research techniques. Each will have an individual research project: these include the atmospheric corrosion and cracking behaviour of stainless steels in above-ground storage conditions, the corrosion of different stainless steels in cement containing sulfur species, and the corrosion behaviour of uranium and Magnox in cement wasteforms (all related to intermediate-level waste), and the behaviour of carbon steel in clay, which may be a candidate for storage of spent fuel. Towards the end of the programme we will explore the influence of radiation damage on some of these corrosion problems.

We will carry out the research in close collaboration with industrial and international experts in the field, who have committed to giving us informal advice in return for information on our findings at our three-monthly meetings. As our research progresses, the X-ray techniques that we are developing will become more routine, to the point where they will be taken up by industrial users who carry out contract work for both UK and international waste management programmes. The methods are also likely to be beneficial to other applications such as corrosion of reinforcing bars in concrete and corrosion of oil pipelines

We plan to hold an international workshop at Diamond on corrosion issues in nuclear waste storage to share our findings and discuss the possibility of establishing a programme of "legacy" corrosion samples that will allow monitoring of the development of corrosion in typical environments over years or even decades.

There is a continuing need for skilled researchers with knowledge in this area: we will train a research fellow and three PhD students in issues surrounding nuclear waste storage, mechanisms and modelling corrosion processes, and the use of X-ray techniques who will be able to continue this work as the country's nuclear waste strategy evolves.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.bham.ac.uk