EPSRC logo

Details of Grant 

EPSRC Reference: EP/I014845/1
Title: Selective activation of chemical bonds by active coherent THz spectrometry
Principal Investigator: Donnan, Dr RS
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Sch of Electronic Eng & Computer Science
Organisation: Queen Mary University of London
Scheme: Standard Research
Starts: 06 December 2010 Ends: 05 July 2012 Value (£): 246,814
EPSRC Research Topic Classifications:
Chemical Synthetic Methodology Physical Organic Chemistry
EPSRC Industrial Sector Classifications:
Chemicals Pharmaceuticals and Biotechnology
Related Grants:
Panel History:  
Summary on Grant Application Form
'Dial-a-Molecule' is a current EPSRC Grand Challenge. It seeks to tackle questions of the kind: 'How can we reliably predict how to convert one molecule into another?' 'How can we carry out a series of reactions sequentially?' and 'Can we invert modular reactions and/or reactors which can be linked to a myriad of ways to provide complex synthesis?' It has been estimated that achieving the reality of 'Dial-a-Molecule' may take 20 - 40 years to realise. The adventure of this project is to investigate the very real possibility of dramatically bringing this time-frame forward to 5 years distant from now by answering these questions through activation of specific chemical bonds in any given molecule. The consequences of being able to do so would be profound and far-reaching! - new reactions, potential for complete control of outcomes in product synthesis e.g. in C-H activation/oxidation. How can this be done? - by exploiting very recent state-of-the-art developments in electronic engineering to generating high-power terahertz (sub-millimetre wavelength) radiation and to bring it into the world of synthetic organic chemistry. The apparatus that embodies this sophisticated development is called a vector network analyser. Its special features, that are vital to supporting the aims of solving long-standing problems in organic synthesis, is that it generates and receives (phase) stable, widely-tunable radiation spanning many octaves. The resolution in tuning is hyper-fine, being on the order of a million-fold higher than conventional spectrometers (that are broadly based around thermal sources of radiation for their measurement operation). These unique features of the vector-network-analyser offer the potential reality for 'dialing' into the energy required to activate a given chemical bond in a molecule and not, say, an immediate neighbouring bond! Importantly the vector network analyser can be operated to immediately scan the aftermath of a stimulated reaction to investigate what reaction products may have resulted and in what quantity. The activation and scan events may be variably-controlled to range from a second to sub-microsecond time scales as required. An important consequence associated with being able to selectively trigger selective reaction processes with high precision is to eliminate the yield of waste products. Stages in conventional organic synthesis typically yield waste that is 1000s of time the mass of the desired product. Eliminating this waste translates into reduced consumption of energy both in generation and disposal. Over the 18 months of this project the burden of work will be: to design and manufacture a reaction vessel that simultaneously satisfies radiation and chemical constraints; and to systematically trial the programmable capability of the vector network analyser in service of promoting 'dialed' reactions of organic synthesis.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: