EPSRC logo

Details of Grant 

EPSRC Reference: EP/I012060/1
Title: Low-Dimensional Chemistry
Principal Investigator: Leggett, Professor G
Other Investigators:
Armes, Professor SP Hobbs, Professor J Hunter, Krebs Professor of Biochemistry CN
Evans, Professor S Geoghegan, Professor M
Researcher Co-Investigators:
Project Partners:
Department: Chemistry
Organisation: University of Sheffield
Scheme: Programme Grants
Starts: 15 December 2010 Ends: 15 June 2016 Value (£): 4,050,175
EPSRC Research Topic Classifications:
Chemical Synthetic Methodology Materials Characterisation
Materials Synthesis & Growth Surfaces & Interfaces
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
13 Sep 2010 Physical Sciences Programme Grants Interview Panel Announced
Summary on Grant Application Form
Miniaturisation has become a familiar aspect of modern technology: every year, laptops get thinner, mobile phones get smaller, and computers get faster as more and more components can be accommodated on their chips. The emergence of nanoscience as a scientific discipline has been driven by the relentless quest by the electronic device industry over the past four decades for ever-faster chips. The importance of miniaturisation is not just in the fact that smaller devices can be packed more closely together, however: when objects become very small indeed, they sometimes acquire entirely new properties that larger objects formed from the same materials do not normally exhibit. Catalysts have been used for over a century to accelerate chemical reactions, and many catalysts consist of metal particles supported on ceramics. For several decades, catalytic converters in car exhausts have used metallic nanoparticles - particles a few billionths of a metre in size - to clean the exhaust gas because the catalytic activity has been found to be dramatically increased by the small size of the active metal. When semiconductors are formed into structures of the same size, they acquire entirely new optical properties purely as a consequence of their small size - for example, they glow brightly when stimulated by electrical current, and the colour of the light emitted is determined by the size of the particle (and can thus be controlled with high precision). These phenomena are referred to as low-dimensional ones: they are new, unexpected phenomena that result only from the small size of the active objects.There is a very important sense in which biological objects may also be said to be low-dimensional. Cells are tiny objects that are driven by processes that involve small numbers of molecules. Biologists have recognised that single molecules are quite different from large groups of molecules, and there has therefore been a lot of interest in studying them, because they may help us to understand much better how larger systems work. However, there are no established tools for building systems of interacting single molecules, what might be called low-dimensional systems . New tools are required to achieve this, and the goal of this programme will be to develop them.We wish to build a synthetic low-dimensional system, which will incorporate biological molecules and synthetic models for them, that replicates the photosynthetic pathway of a bacterium. Photosynthesis is the basis for all life on earth, so it has fundamental importance. However, there are important other motivations for studying the marvellously efficient processes by which biological organisms collect sunlight and use it to live, grow and reproduce. The current concerns about shortage of fossil fuels, and the problems associated with the carbon dioxide produced by burning them, make solar energy a highly attractive solution to many pressing problems. To best exploit the huge amount of solar energy that falls on the earth, even in colder climates like the UK, we may do well to learn from Nature. By building a ship-based system that replicates the photosynthetic behaviour of a biological organism, we will gain new insights into how Natural photosynthesis works. More than that, however, we will develop entirely new, biologically-inspired design principles that may be useful in understanding many other scientific and engineering problems. At a fundamental level, biological systems work quite differently from electronic devices: they are driven by complex signals, they are fuzzy and probabilistic, where microsystems are based on binary logic and are precisely determined. The construction of a functioning low-dimensional system that replicates a cellular pathway will require the adoption, in a man-made structure, of these very different design principles. If we can achieve this it may yield important new insights into how similar principles could be applied to other technologies.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.shef.ac.uk