EPSRC logo

Details of Grant 

EPSRC Reference: EP/I004475/1
Title: Emergent phenomena in novel correlated materials
Principal Investigator: Coldea, Dr AI
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Catholic (Radboud) University Foundation Imperial College London United States Naval Research Laboratory
University of Liverpool
Department: Oxford Physics
Organisation: University of Oxford
Scheme: Career Acceleration Fellowship
Starts: 01 March 2011 Ends: 31 December 2019 Value (£): 1,171,400
EPSRC Research Topic Classifications:
Condensed Matter Physics
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
02 Jun 2010 EPSRC Fellowships 2010 Interview Panel C Announced
Summary on Grant Application Form
An important phenomenon in Nature is that of organization of many objects interacting together, which results into new entities with properties that are much more than the sum of the parts . For example the ability to think is a property of the brain as a whole and is the result of interactions that involves numerous neurons exchanging information in an organized way and is not a property of a single individual neuron. Similarly, in many technologically-important materials electrons also show a certain degree of order in that they correlate their motion with one another to avoid the strong repulsion that arise when they are brought close together. Such correlation effects can lead to surprising emergent material properties, which often can not be predicted in advance, such as superconductivity, where current flows with no resistance due to the fact that electrons travel in pairs in a very robust way. This proposal is to explore superconductivity and other novel form of electronic order stabilized by strong correlations in complex materials that are often not found in Nature but are artificially synthesized with the purpose to achieve certain material functionality. In 2008 the discovery of superconductivity a large class of materials based on Iron stimulated a revolution in condensed matter physics. This was most unexpected as usually Iron has strong ferromagnetic properties (attracting metals) that would normally destroy a superconducting state by breaking the special pairing between electrons. The large number of structural combinations in which iron-based superconductivity is found has raised the hope that the periodic table still holds the key to the discovery of new materials with extremely high superconducting temperatures which one day will revolutionize our way of living. In my first project I propose to take on the challenge of exploring deep into the nature of structural configurations, predicting electronic behaviors and testing experimentally novel superconductors. My second project aims to explore how electrons organize themselves in the presence of frustrated magnetic interactions. Imagine a restaurant with a number of triangular tables and a large number of male and female guests; if one tries to arrange guests such that everybody sits next to a person of the opposite sex, it cannot be realized even for one single table and many equally-unsatisfactory arrangements exist. The same kind of decision has to be made by magnetic spins which can point up or down on a triangular lattice and they cannot decide, so become frustrated. How electrons organize themselves and how they travel in such circumstances remains a mystery. Another amazing unexplored behaviour is that in which electrons are able to flow freely on the surface of a material but not inside it, giving rise to an insulator with a surface that conducts electricity. In this kind of topological insulator, as also in certain frustrated systems, conventional laws of physics do not apply as particles could be found in a superposition of several states at the same time, property that could be important for use in future quantum computers.For this research I use and plan to develop the most advanced tools for probing electron correlations in micron-size single crystalline materials using the highest magnetic fields in the world (a million times larger than earth's magnetic field), low temperatures near absolute zero and extreme high pressures to tune interactions and probe new electronic phases of matter.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.ox.ac.uk