EPSRC logo

Details of Grant 

EPSRC Reference: EP/H052046/1
Title: Determination of Corneal Biomechanical Properties in vivo
Principal Investigator: Elsheikh, Professor A
Other Investigators:
Trucco, Professor E Garway-Heath, Professor D
Researcher Co-Investigators:
Project Partners:
Aberdeen Royal Hospitals NHS Trust International Glaucoma Association Ninewells Hospital & Medical School
UltraVision CLPL
Department: School of Engineering
Organisation: University of Liverpool
Scheme: Standard Research
Starts: 01 January 2011 Ends: 30 June 2015 Value (£): 397,413
EPSRC Research Topic Classifications:
Biomedical sciences Biophysics
Materials Characterisation
EPSRC Industrial Sector Classifications:
Healthcare
Related Grants:
Panel History:
Panel DatePanel NameOutcome
16 Mar 2010 Healthcare Partnerships Announced
Summary on Grant Application Form
Despite recent advances in our understanding of corneal structure and the methods used to test corneal tissue in the lab, it is still impossible to measure corneal properties in-vivo. The inability to determine the basic biomechanical properties (such as hyperelasticity, hysteresis and viscoelasticity) in-vivo had a serious adverse effect on our ability to optimise treatments or predict their outcome, and made it necessary to rely on average properties obtained ex-vivo.This project aims to make in-vivo measurement of corneal biomechanical properties a reality. It seeks to cover the research needs underpinning the development of this technology and address two fundamental questions that have prevented progress in this field. The two questions revolve around the extraction of the material's stress-strain behaviour from the overall cornea's response to mechanical actions. Once these obstacles are removed, the path to establish in-vivo measurement technology becomes straightforward.There are significant potential benefits that can be achieved if corneal biomechanical properties could be measured in-vivo. The examples include better design of implants to restore clear vision in keratoconus patients, better planning of refractive surgery procedures that currently result in unexpected aberrations in 1:7 of patients, and the ability to eliminate effect of corneal stiffness on intraocular pressure measurements, which are required for glaucoma management. These potential developments will mean significant benefits to patients, healthcare services and medical device manufacturers.The research starts with an experimental study to determine the regional variation of corneal and scleral hyperelasticity, hysteresis and viscoelasticity. The study will use 3D digital imaging of human eye globes subjected to cycles of both intraocular pressure and external applanation forces and aim to address the key gaps in knowledge in ocular biomechanics.With maps of biomechanical properties established, numerical analysis tools will be built to embody these maps, in addition to existing knowledge on the biomechanical, topographic and micro-structural characteristics of the human eye. The tools, which will be custom built, will be validated against ocular behaviour data obtained experimentally before using them to develop conceptual techniques to measure corneal biomechanics in-vivo.Two types of property measurement techniques, based on contact and non-contact methods, will be assessed. In both cases, corneal response to a mechanical action is correlated to corneal stress-strain behaviour. This exercise will focus on the key research questions, and aim to formalise an analysis procedure to extract the cornea's stress-strain behaviour from its mechanical response, and to exclude the effects of intraocular pressure and cornea's geometric parameters on the results.The results of the numerical study will be assessed using proof-of-concept prototypes both experimentally on human eye globes and on volunteers within a clinical setting. The tests are intended to validate the numerical findings, cast light onto the characteristics of ocular deformation under mechanical actions, and provide initial results which will be important for the conduct of future clinical studies on fully operational device prototypes.Overall, the project addresses a challenging problem that is affecting progress in several areas of patient care in ophthalmology. It seeks to overcome the main barriers to making the in-vivo measurement of corneal properties a reality. The project follows a systematic approach where necessary knowledge about ocular behaviour is generated and a predictive tool of ocular mechanical response built before assessing the property measurement methods. With the knowledge and understanding to be generated in this project, research and development can progress to embody the new technology into medical devices suitable for clinical use.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL: http://www.ocular-biomechanics.liv.ac.uk
Further Information:  
Organisation Website: http://www.liv.ac.uk