EPSRC logo

Details of Grant 

EPSRC Reference: EP/H024107/1
Title: Molecular-Metal-Oxide-nanoelectronicS (M-MOS): Achieving the Molecular Limit
Principal Investigator: Cronin, Professor L
Other Investigators:
Asenov, Professor A Murrie, Professor M Paul, Professor DJ
McGrady, Professor J Cooke, Professor G MacLaren, Dr DA
Cumming, Professor DRS
Researcher Co-Investigators:
Project Partners:
National Semiconductor
Department: School of Chemistry
Organisation: University of Glasgow
Scheme: Programme Grants
Starts: 01 February 2010 Ends: 31 July 2014 Value (£): 3,567,075
EPSRC Research Topic Classifications:
Chemical Synthetic Methodology Co-ordination Chemistry
Electronic Devices & Subsys.
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
10 Nov 2009 Physical Sciences Programme Grants Panel Announced
Summary on Grant Application Form
Our vision is to demonstrate functional circuits using molecular metal-oxides (MMOs), connecting self-assembled MMOs into top-down, lithographically defined CMOS architectures with the ultimate aim of achieving the molecular limit in data storage and processing: i.e. realising inorganic, single molecule transistors. Our proposal is unique because: (i) it identifies a new class of inherently CMOS-compatible and functional molecules that have not previously been considered (or even patented) for 'beyond-Moore' applications; (ii) it aims to address key practicalities of scalability, interfacing, stability and reproducibility that are often omitted from schemes aiming simply to construct a single demonstrator device; and (iii) it is underpinned by a strongly-collaborative team with complementary expertise in molecular synthesis, modelling and device fabrication. This project is highly creative and adventurous, proposing that inorganic molecules could be reliably used in the fabrication of nano-electronic devices that take advantage of the intrinsic electronic properties of molecules as switchable molecular semiconductors (EPSRC success feature 1). It supports talent at all levels - from senior professors to early career researchers - in a highly supportive and collaborative context (EPSRC success feature 2). Initially, we propose to design hybrid devices combing CMOS embedded with bistable MMOs and to examine the interplay between 'bulk' and nano-molecular semiconducting units. Our approach is both innovative and practical because it embeds molecular electronics within the current the state-of-the-art, allowing us to address practical issues and develop know-how in this new field, before down-scaling to 'beyond-Moore' dimensions down to the molecular limit with collaborations that achieve a two-way flow of knowledge between the research base and industry (Building collaborations that achieve a two-way flow of knowledge between the research base and industry (EPSRC success feature 3) and at the same time this proposal encourages and supports research that crosses the borders between disciplines (EPSRC success feature 4). Theoretical studies of both single clusters and arrays will allow us to predict their behaviour and design new architectures; surface studies and device measurements will enable us to assess the electronic characteristics of devices and drive us towards viable nanoelectronics that can be mass-produced therby developing a shared vision of tomorrow's major challenges and opportunities with stakeholders: society, industry, universities and other partners (EPSRC succes feature 5). We aim to show that MMO-CMOS (herein called M-MOS) can function with 'embedded' molecular units and we plan towards the single molecule limit. This potential will be assessed and exploited within the Glasgow Nano EPSRC KTA (EP/H500138/1) allowing 'real-time' technology transfer allowing us to immediately seize any commercial development opportunities thereby building a better understanding of where we should focus our effort to benefit both UK society and the UK economy and increase its global competitiveness (ESPRC success feature 6).Finally this programme will directly train 7 PDRAs and 4 PhDs and indirectly train 8 further PhDs and 24 undergraduate / erasmus students thereby creating and sustaining research scientists and engineers in the UK so that they are recognised worldwide as leaders in their field (EPSRC success feature 7).
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.gla.ac.uk