EPSRC logo

Details of Grant 

EPSRC Reference: EP/G037787/1
Title: Industrial Doctorate Centre: Technologies for Sustainable Built Environments
Principal Investigator: Shao, Professor L
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Arup Group Ltd Atkins Balfour Beatty Plc
BRE Group (Building Res Establishment) BSRIA Central Data Control Ltd
CH2M Hill (Halcrow) Dytecna Ltd Faber Maunsell Ltd
Johnson Construction UK Ltd Max Fordham LLP Monodraught Ltd
Motorola Semplice Energy Ltd TV Energy Ltd
Department: Built Environment
Organisation: University of Reading
Scheme: Centre for Doctoral Training
Starts: 01 October 2009 Ends: 31 March 2018 Value (£): 5,976,466
EPSRC Research Topic Classifications:
Building Ops & Management Energy Efficiency
EPSRC Industrial Sector Classifications:
Construction Environment
Related Grants:
Panel History:  
Summary on Grant Application Form
Research into the development and application of sustainable construction, renewable energy applications and energy management technologies, including their economic and social impacts, is the main thrust of the Centre. Attention will also extend to the way in which the adoption and use of such technologies can be enhanced through procurement and other policy levers. In particular, research in the Centre will be focused on the following two complementary themes:1. Sustainable building and services systems:The emphasis of this theme is on developing new concepts in the design, construction, operation and maintenance of sustainable building and through-life service systems. The impact of climate change and the modelling of the local environment and its interaction with the built environment as well as sustainable procurement and the diffusion of innovative sustainable technologies will also be included. The aim is to achieve lower carbon emission in the construction and operation of buildings and their environmental control systems.2. Energy management in buildings and infrastructure systems:This theme concerns the integration of low- to zero-carbon energy generation systems in buildings and infrastructure systems, demand management technologies (e.g. smart meters, consumption feedback devices, utility load management), and building energy management technologies. The theme addresses the systems integration of sources of supply, demand and storage within a geographically defined area to achieve local area supply-demand matching. The emphasis will be on analysis, integration and management of existing energy technologies at the site scale and the factors governing their adoption within the construction industry.These activities will be delivered with the supporting research areas below:- Climate, climate change and the built environment- Sustainable materials and structures- Innovation, design and sustainable technologies- Informatics for sustainable technologiesA key aspect of this proposal is that the EngD training programme should be sufficiently flexible to cater for the varying needs of the Research Engineers (REs) who will be based in industry, but employed by the University. In addition to the research programme, candidates will undertake a mixture of core and elective modules, some of which are currently offered in the University for PhD research students and existing MSc programmes. The taught programme will be an integral part of the EngD programme and supports the research that the REs will be carrying out at the sponsoring companies. The taught programme is planned to fulfil the following objectives:- Provide up-to-date knowledge of the relationship between engineering research, innovative technologies, and sustainability with emphasis on application to the built environment and energy management.- Deliver professional development in management and business skills that are necessary for dealing with constantly changing legislative environment particularly in relation to energy utilisation.- Fill any knowledge gaps that may arise from the research project.The training will be carried out with the full collaboration of the companies sponsoring the research engineers. The participating companies are also expected to contribute to an enhanced stipend to attract the best talent. The Research Engineers will be registered full-time on the EngD degree course.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.rdg.ac.uk