EPSRC logo

Details of Grant 

EPSRC Reference: EP/G004072/1
Title: Materials design with high-throughput computing: metal borides
Principal Investigator: Kolmogorov, Dr A
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Ilika plc ISIS
Department: Materials
Organisation: University of Oxford
Scheme: Career Acceleration Fellowship
Starts: 01 October 2008 Ends: 31 August 2012 Value (£): 563,535
EPSRC Research Topic Classifications:
Energy Storage Materials Characterisation
Materials Synthesis & Growth
EPSRC Industrial Sector Classifications:
Related Grants:
Panel History:
Panel DatePanel NameOutcome
26 Jun 2008 Fellowship Allocation Panel Meeting Announced
12 Jun 2008 Fellowships 2008 Interviews - Panel C Deferred
Summary on Grant Application Form
Realization of new technologies that are able to minimize energy consumption and reduce our dependence on fossil fuels depends critically on the development of novel materials. For example, the most immediate obstacle to the widespread use ofhydrogen as a clean energy carrier is the practicality of hydrogen storage for on-board applications: no existing materials satisfy the required specifications. Superconductors can also have a major impact on numerous technologies in transportation, medicine, electronics etc., provided that they can operate at relatively high temperatures and carry significant current.I plan to explore an important class of materials, metal borides, that have a wide range of potential applications: superconductors, hydrogen stores, batteries, catalysts, and hard coatings. My main goal is to perform an extensive ab initio analysis of metal boride properties that will reveal binding mechanisms across a wide range of structures and compositions. I will use the acquired fundamental knowledge to develop an efficient compound prediction method - a new method is required because the complexity of metal borides' morphologies prohibits the use of automated compound prediction methods recently developed for metal alloys. Development of such a tool will speed up the design of multi-component metal borides for specific applications.I have already attempted to use this strategy for rational materials design during my postdoctoral work and demonstrated its effectiveness on particular examples. I have revisited a few selected binary and ternary metal-boron systems and identified several previously overlooked promising candidate compounds with appealing properties. This gives grounds for optimism that a more large-scale systematic search for stable phases will reveal new materials of great practical importance. My main focus will be on metal borides with potential for superconductivity or hydrogen storage, as I have expertise in these fields. As part of my career development I also plan to extend my research to other areas, such as battery applications. I believe that consideration of such a broad range of applications in one combined study is not only a sensible but also the most efficient work plan. Indeed, as described in the proposal, metal borides with very different properties may have an underlying structural link and their stability regions can be investigated investigated in one set of carefully planned simulations and experiments.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.ox.ac.uk