EPSRC logo

Details of Grant 

EPSRC Reference: EP/E054668/1
Title: Ultra short gate length diamond FETs for high power/high frequency applications
Principal Investigator: Moran, Professor DAJ
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Element Six Filtronic
Department: Electronics and Electrical Engineering
Organisation: University of Glasgow
Scheme: Advanced Fellowship
Starts: 01 October 2007 Ends: 30 September 2012 Value (£): 506,543
EPSRC Research Topic Classifications:
Electronic Devices & Subsys. Materials Characterisation
Materials Processing
EPSRC Industrial Sector Classifications:
Electronics
Related Grants:
Panel History:
Panel DatePanel NameOutcome
24 Apr 2007 Materials Fellowships 2007 - Interviews FinalDecisionYetToBeMade
27 Mar 2007 Materials Fellowships Sift Panel InvitedForInterview
Summary on Grant Application Form
Recent advances in the growth and processing of electronic diamond have provided a glimpse into the potential device performance and applications that this exciting material system can provide. Unique and highly desirable material properties such as large bandgap, high intrinsic mobility and very high thermal conductivity deem diamond the ultimate material for high power/high frequency device realisation. This combined with ultra small feature processing potential, points towards an ultra short gate length FET technology as the obvious choice for the application of such a unique material system. For this work it is proposed that 10nm T-gate diamond FETs be investigated leading to a device technology that can satisfy the expanding demand for high power / high frequency operation. In particular this technology finds application in increasing the source power of Terahertz imaging systems, which currently are of great interest for security and medical imaging applications. This prime goal of the proposed research is accomplishable using high quality diamond material supplied by U.K. based company Element 6 and use of the extensive fabrication and characterisation facilities at the University of Glasgow. In particular, access to the ultra-high resolution capabilities of the recently commissioned Vistek VB6 electron beam lithography tool, provides a direct route to the realisation of such ultra-small dimension devices.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.gla.ac.uk