EPSRC logo

Details of Grant 

EPSRC Reference: EP/E035868/1
Title: Putting next generation fusion materials on the fast track
Principal Investigator: Wilson, Professor Emeritus J
Other Investigators:
John, Professor P
Researcher Co-Investigators:
Project Partners:
EURATOM/UKAEA Fusion Association Meggitt PLC Morgan Advanced Materials and Technology
Department: Sch of Engineering and Physical Science
Organisation: Heriot-Watt University
Scheme: Standard Research
Starts: 01 July 2007 Ends: 30 June 2010 Value (£): 743,778
EPSRC Research Topic Classifications:
Fusion Materials testing & eng.
EPSRC Industrial Sector Classifications:
Related Grants:
Panel History:  
Summary on Grant Application Form
Enormous numbers of energetic neutrons are released when helium is produced by the fusion of deuterium and tritium at high temperatures, as in our Sun. This promises to solve the World's long-term energy needs if a controlled version can be carried out on Earth. JET at Culham has been one of the leading experimental reactors for magnetically confined fusion using gaseous plasmas, and has been an important step towards designing the international thermonuclear experimental reactor, ITER. UK fusion technology is now on the fast track and will demand a new generation of materials for commercial reactor construction. The selection of materials for ITER has been based on those available some years ago, but there are trade-offs in deciding whether to use high temperature metals that are resistant to plasma erosion but liable to be damaged by radiation and also contaminate the pure plasma, or to use light elements that are toxic (beryllium) or more easily eroded and may absorb significant amounts of tritium fuel (graphite). We want to establish a materials capability for the next generation, and in particular to exploit our capability in diamond films as a route to designer carbons as plasma-facing wall materials. This proposal intends to coat carbon tiles with diamond on a large scale, in order to lower the erosion rates, dust formation, and tritium absorption, by using the unique properties of diamond, namely high temperature stability, radiation resistance, high atomic density and unsurpassed chemical stability in the presence of hydrogen plasmas. This solution enables the preferred use of low atomic number plasma-facing materials. Computational modelling of carbon structures will complement the experimental programme in optimising the chemical and physical structure of a composite functional material exposed to radiation. If successful, this approach would enable reactors to operate for longer periods before component replacements and without compromising the tritium inventory.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.hw.ac.uk