EPSRC logo

Details of Grant 

EPSRC Reference: EP/E010962/1
Title: Scale-up feasibility of plasma deposition in 3D tissue engineering scaffolds
Principal Investigator: Bradley, Professor JW
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Electrical Engineering and Electronics
Organisation: University of Liverpool
Scheme: Standard Research
Starts: 01 November 2006 Ends: 31 July 2008 Value (£): 125,722
EPSRC Research Topic Classifications:
Plasmas - Technological Tissue Engineering
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
EP/E01044X/1
Panel History:  
Summary on Grant Application Form
The field of Tissue Engineering offers the possibility of generating replacement organs and tissue in response to loss or failure with obvious application in human health care.One of the many challenges that must be met to achieve wide application of this principle is the provision of guidance to cell positioning in the early stages of tissue formation. A common strategy is to support cells using synthetic scaffolds, designed to degrade gradually leaving cells supported by the extra cellular matrix that they produce naturally over time. The problem of initial poor cell adhesion to synthetic polymers commonly used in tissue engineering and poor ingress of cells into the scaffold centre has been widely reported in the literature. One method (proof-of-principle) that has been explored at Nottingham is to promote cell adhesion and ingress by chemically functionalising the scaffold using plasma deposition. However, to date the characteristic penetration depth (e-folding length) of the deposit from the scaffold periphery is only about 1 mm. In this feasibility study, we shall attempt to develop a low pressure pulsed polymerising plasma struck in monomers such as allyl amine which has the characteristics (plasma parameters in on and off time of the pulse) necessary to allow penetration of the plasma into pours of reduced dimensions and over much large distances. This will allow a scale up from small scale scaffold discs treated currently to real-world scaffolds for cartilage, bone or other large tissue engineering applications.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.liv.ac.uk