EPSRC logo

Details of Grant 

EPSRC Reference: EP/Y035569/1
Title: EPSRC Centre for Doctoral Training in Inorganic Materials for Advanced Manufacturing (IMAT)
Principal Investigator: Aldridge, Professor S
Other Investigators:
Vincent, Professor KA Grobert, Professor N Clarke, Professor SJ
Williams, Professor CK
Researcher Co-Investigators:
Project Partners:
Boron Specialties CPI Diamond Light Source
Drochaid Research Services Limited Econic Technologies Ltd Fluorok Ltd
Henry Royce Institute HydRegen ISIS
J A Kemp & Co Johnson Matthey Oxeco Ltd
Oxford Instruments Plc OXGRIN OxLEP Ltd
QinetiQ SCG Chemicals Co. Ltd Siemens Energy Ltd
The Faraday Institution
Department: Oxford Chemistry
Organisation: University of Oxford
Scheme: Centre for Doctoral Training
Starts: 01 April 2024 Ends: 30 September 2032 Value (£): 8,415,885
EPSRC Research Topic Classifications:
Catalysis & Applied Catalysis Chemical Synthetic Methodology
Materials Characterisation Materials Synthesis & Growth
EPSRC Industrial Sector Classifications:
Manufacturing Chemicals
Environment Healthcare
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
20 Nov 2023 EPSRC Centres for Doctoral Training Interview Panel L November 2023 Announced
Summary on Grant Application Form
Our CDT in Inorganic Materials for Advanced Manufacturing (IMAT) will provide the knowledge, training and innovation in Inorganic Chemistry and Materials Science needed to power large-scale, high-growth, current and future manufacturing industries. Our cohort-centred programme will build the skills needed to understand, transform and discover better products and materials, and to tackle the practical challenges of manufacturing, application and recycling.

IMAT CDT addresses the 'Meeting a user need' CDT focus area, while also addressing 3 EPSRC strategic priorities: 'Physical Sciences Powerhouse', 'Engineering Net Zero' and 'Quantum Technologies'.



'Inorganics' are essential to many industries, from fuel cells to electronics, from batteries to catalysts, from solar cells to medical imaging. These materials are made by technically skilful chemical transformations of elements from across the breadth of the Periodic Table: success is only achievable via in-depth understanding of their properties and dynamic behaviour, requiring systems-thinking across the boundaries of Chemistry and Materials Science. The sector is characterized by an unusually high demand for high-level (MSc/PhD) qualified employees. Moreover, wide-ranging synergies in manufacturing challenges for 'inorganics' mean significant added value is attached to interdisciplinary training in this area. For example, understanding ionic/electronic conductivity is relevant to thermo-electric materials, photo-voltaics, batteries and quantum technologies; replacing heavy metals with earth-abundant alternatives is relevant to chemical manufacturing from plastics to fragrances to speciality chemicals; and methods to manufacture starting from 'natural molecules' like water, oxygen, nitrogen and CO2 will impact nearly every sector of the chemical industry.

IMAT will train graduates to navigate interconnected supply chains and meet industry technology/sustainability demands. To invent and propel future industries, graduates must have a clear understanding of scientific fundamentals and be able to quickly apply them to difficult, fast-changing challenges to ensure the UK's leadership in high-tech, high-growth industries. A wide breadth of technical competence is essential, given the sector dominance of small enterprises employing <50 people. The 'inorganic' sector must also meet challenges associated with resource sustainability, manufacturing net zero, pollution minimisation and recycling; our cohorts will be trained to think broadly, with awareness of environmental, societal, legal and economic factors. Our creative and highly skilled graduates will transform sectors as diverse as energy generation, storage, electronics, construction materials, consumer goods, sensing/detection and healthcare.

IMAT builds upon the successful EPSRC 'inorganic synthesis' CDT (OxICFM) and (based on extensive end-user/partner feedback) expands its training portfolio to include materials science, physics, engineering and other areas needed to equip graduates to tackle advanced materials challenges. It addresses local, national and international skills gaps identified by our partners, who include companies spanning a wide range of business sizes/sectors, together with local enterprise partnerships and manufacturing catapults.

IMAT offers a unique set of training goals in 'inorganic' chemistry and materials - a key discipline encompassing everything made which is not an organic molecule: from salts to composites, from acids/bases to ceramics, from organometallics to (bio)catalysts, from soft-matter to the toughest materials known, and from semi-conductors to super-conductors. A unifying training spanning this breadth is made possible through the strength of expertise across Oxford Chemistry and Materials, and our national partner network. Our goal is to empower future graduates by equipping them with this critical knowledge ready to apply it to new manufacturing sectors.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.ox.ac.uk