EPSRC logo

Details of Grant 

EPSRC Reference: EP/Y002644/1
Title: Cross-Layer Uncertainty-Aware Reinforcement Learning for Safe Autonomous Driving
Principal Investigator: Huang, Dr C
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Nanyang Technological University National Taiwan University Northwestern University
Department: Sch of Electronics and Computer Sci
Organisation: University of Southampton
Scheme: Standard Research - NR1
Starts: 01 July 2024 Ends: 30 June 2026 Value (£): 163,109
EPSRC Research Topic Classifications:
Artificial Intelligence
EPSRC Industrial Sector Classifications:
Information Technologies
Related Grants:
Panel History:
Panel DatePanel NameOutcome
17 May 2023 ECR International Collaboration Grants Panel 1 Announced
Summary on Grant Application Form
Autonomous driving (AD) has a huge market and IS receiving enormous attention in both academia and industry. To deal with complex scenarios, autonomous vehicles (AVs) will use reinforcement learning (RL) to design high-level planners in the functional layer but always suffer from safety issues during sim-to-real transfer. One of the main challenges is that the current practice of functional-layer design does not sufficiently consider the uncertainty in the architecture layer, e.g., the software layer and hardware layer. This open challenge will be tackled in this project by a comprehensive study of the interaction between RL and architecture-layer uncertainty. Specifically, we will build virtual AD scenarios on the simulation platform with formal modeling of architecture-layer uncertainty based on real-world data (WP1). The impact of uncertainties on RL will be discussed via the design of cross-layer uncertainty-aware RL (WP2). Inversely, we will also study the robustness of an RL with respect to cross-layer uncertainty by computing the Pareto front of the largest software/hardware uncertainty patterns that a given RL is robust to (WP3). Extensive analysis including verification (WP2, WP3), simulation (WP2, WP3), and real-world experiments (WP4) will be carried out. The success of this project will greatly improve the practicability of RL in AD with a broader impact on other robotics applications.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.soton.ac.uk