EPSRC Reference: |
EP/X039773/1 |
Title: |
CBET-EPSRC Sustainable bioplastics prepared by ultrasonic treatment with low CO2 footprint |
Principal Investigator: |
Shchukin, Professor D |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Chemistry |
Organisation: |
University of Liverpool |
Scheme: |
Standard Research |
Starts: |
01 September 2024 |
Ends: |
31 August 2027 |
Value (£): |
536,076
|
EPSRC Research Topic Classifications: |
Design of Process systems |
Materials Processing |
Materials Synthesis & Growth |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
This project aims at the development of innovative green ultrasonic manufacturing technology for the production of 100% biodegradable, compostable, and 100% biobased thermoplastics using agricultural and biofuel refinery side products containing hemicelluloses (xylan), biobased 2,5-furandicarbonic acid and monoethylene glycol.
These biomass-based thermoplastics (PEF) can replace petroleum-based packaging materials, fibers and commodity plastics (PET, PS, PE/PP) - the major sources of the ocean and landfill contamination with poorly recyclable microplastic particles. Approximately only 9% of petroleum-based plastic waste is recycled Worldwide. We focus on 100% degradation of the proposed thermoplastics after one-two month of composting.
Ultrasonic synthesis is a green method of energy input into reaction mixture for fabrication of new types of materials in nonequilibrium conditions employing cavitation effect. It does not require additional reagents and high temperatures thus reducing the amount of by-products. We will study in-situ cavitation effects and mechanisms of the formation of biomass based thermoplastics. Application of ultrasound as a new manufacturing process for fabrication of biomass-based thermoplastics can result in 3-4 fold reduction of the energy consumption as well as CO2 footprint and minimisation of the amount of waste during manufacturing.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.liv.ac.uk |