EPSRC Reference: |
EP/X013332/1 |
Title: |
A Single-Crystal X-ray Diffractometer for High-Power, High-Throughput Chemical Crystallography |
Principal Investigator: |
Layfield, Professor RA |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Sch of Life Sciences |
Organisation: |
University of Sussex |
Scheme: |
Standard Research |
Starts: |
01 January 2023 |
Ends: |
31 December 2024 |
Value (£): |
1,290,782
|
EPSRC Research Topic Classifications: |
Co-ordination Chemistry |
Materials Characterisation |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
We request support for a state-of-the-art Metaljet single-crystal X-ray diffractometer equipped with an automated robotic sample changer. This equipment will underpin a variety of current research projects in the South-East region of the UK and will enable many more in the future.
X-ray crystallography is the most important technique for determining the structures of crystalline solids. The UK boasts a history of pioneering discovery in crystallography, including several Nobel Prizes. Today, the strength of the research base is such that the UK leads the world in crystallography. The reach and impact of the technique is remarkable, spanning chemistry, life sciences, materials science, condensed matter physics and earth sciences, and incorporating a broad community of industrial and academic users.
The vision for our proposal is to enable rapid structure determination across length scales, from small molecules and supramolecules to chemical-biological systems and extended solids. Examples of these materials include catalysts, molecular magnets, pharmaceutical ingredients, polymers, amphiphiles, drug molecules bound to biological targets, energy materials and metal-organic frameworks. Many of these materials form as very small crystals that are difficult or impossible to measure in full on existing in-house diffractometers, which limits the value of the structural information and acts as a barrier to its downstream implementation. We propose to use striking recent advances in diffraction technology, including the availability of X-ray beams with unprecedentedly high brilliance and detectors with very high sensitivity, that will enable the measurement of such crystals. The resulting information will enable the development of more accurate structure-function relationships for the materials of interest.
The automated robotic sample changer will provide game-changing capability. Conventional approaches to single-crystal measurements can be time-consuming, requiring hands-on effort to mount, centre and measure individual crystals. The robot will allow multiple consecutive measurements of single crystals without the need for human intervention. Automation then allows the quality of the crystals to be ranked and the best one selected for further measurements. This will be of immediate benefit to the majority of the user base, whose samples will be measured in full in Sussex. It will also benefit users with samples that require further measurement at high-demand synchrotrons because the best crystals can be identified in advance, ensuring efficient use of beamtime.
The equipment and the research it will enable are aligned with EPSRC Themes in Physical Sciences, Quantum Technology, Healthcare Technologies and Manufacturing the Future. The proposed equipment will add significant value to EPSRC investment in at least 20 reseach areas across the user base. This will grow over the lifetime of the diffractometer.
The UK is world-leading in analytical science. X-ray crystallography, along with other analytical methods such as NMR spectroscopy, microscopy, and mass spectrometry, are at the heart of the most important research. A major aim of our project is, therefore, to enhance national strategic provision in analytical science in a broader sense.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.sussex.ac.uk |