EPSRC Reference: |
EP/W033941/1 |
Title: |
Towards Zero Emissions Electric Aircraft through Superconducting DC Distribution Network |
Principal Investigator: |
Pei, Dr X |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Electronic and Electrical Engineering |
Organisation: |
University of Bath |
Scheme: |
EPSRC Fellowship |
Starts: |
01 September 2023 |
Ends: |
31 August 2028 |
Value (£): |
1,381,562
|
EPSRC Research Topic Classifications: |
Control Engineering |
Electric Motor & Drive Systems |
Energy Efficiency |
|
|
EPSRC Industrial Sector Classifications: |
Transport Systems and Vehicles |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Electrification of aviation will be central to achieve ambitious environmental targets for the reduction of carbon emission, fuel burn and noise. The UK Aviation Strategy 2050 sets out objectives to ensure a safe and secure way to travel, support growth while tackling environmental impacts. A current game-changing concept is hydrogen-powered electric aircraft. Airbus ZEROe concept aircraft enables investigation of hydrogen technologies that will shape the future zero-emission aircraft. Large-scale hydrogen-powered electric aircraft of multi-megawatt level have very high requirements on power density and efficiency of the on-board electric network. Liquid hydrogen offers a cryogenic environment for the electric network, which opens new opportunities for the use of superconductivity. A cryogenic and superconducting direct current (DC) distribution network is a key step for the development of large-scale hydrogen-powered electric aircraft due to its high efficiency, high-power density, and reduced impact on the overall weight of the aircraft.
The Fellowship aims to make an important contribution towards the development of large-scale hydrogen-powered electric aircraft by developing the first reliable high-power density and high efficiency cryogenic and superconducting DC distribution network. A cryogenic and superconducting direct current (DC) distribution network is attractive due to its high-power density, high efficiency, and reduced impact on the overall weight of the aircraft. This Fellowship will address the highly demanding safety and reliability requirements of the superconducting DC distribution network, necessary to ensure the supply to flight critical loads and to enable the safe recovery of the supply from any fault conditions. It will do so through a novel, powerful combination of numerical and experimental methods to deliver the first cryogenic hybrid DC circuit breaker combined with a superconducting fault current limiter (SFCL). By collaborating with Airbus, ATI FlyZero, IXYS UK Westcode Ltd., and University of Manchester, a pioneering method for the control and protection of the superconducting DC distribution network for large-scale hydrogen-powered electric aircraft will be demonstrated as a vital pathway to make the technology viable for future commercial zero emissions and low noise electric aircraft.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.bath.ac.uk |