EPSRC logo

Details of Grant 

EPSRC Reference: EP/W019655/1
Title: RESIlient buildings using STainless steel (RESIST)
Principal Investigator: Gardner, Professor L
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Bumax Kier Construction Lloyd's Register Group
Outokumpu Stainless Holdings Ltd Ramboll UK Steel Construction Institute
Department: Civil & Environmental Engineering
Organisation: Imperial College London
Scheme: Standard Research
Starts: 23 August 2022 Ends: 22 August 2025 Value (£): 500,331
EPSRC Research Topic Classifications:
Structural Engineering
EPSRC Industrial Sector Classifications:
Construction
Related Grants:
EP/W019701/1 EP/W020351/1 EP/W019809/1
Panel History:
Panel DatePanel NameOutcome
07 Dec 2021 Engineering Prioritisation Panel Meeting 7 and 8 December 2021 Announced
Summary on Grant Application Form
Key to the survival of a building subjected to extreme loads, such as fire, blast and impact is the provision of a robust structural frame, which can accommodate the resulting high strength and ductility demands. To this end, the performance of the beam-to-column joints is paramount, since these will be subjected to high rotation capacity demands and high tying forces, as they are required to facilitate catenary action and provide an alternative load path in the case of a sudden failure of a supporting column.



The fundamental hypothesis underpinning this research project is that replacing the carbon steel components in critical parts of the joints (e.g. bolts, angle cleats, plates) with an appropriate grade of stainless steel, which has greater ductility, as well as better fire behaviour, will enhance the joint strength and ductility thus maximizing the resistance to a progressive collapse during an extreme event such as an impact, blast or fire.

The project consists of 4 technical work packages with a fifth one dedicated to impact and dissemination, as outlined hereafter:

WP 1 focuses on the behaviour of joints under impact loading. Stainless steel plate, bolt and weld material coupons will be tested under high strain rates to determine the material response under conditions brought about by impact loading. The obtained results will be utilised to calibrate material models explicitly accounting for strain rate sensitivity as well as fracture models considering the effect of strain rate and stress triaxiality. Furthermore, lap joints and T-stubs will be tested at high strain rates and FE models will be developed and utilised in parametric studies

WP2 studies the behaviour of material and connections at and after exposure to high temperatures ranging from 20 to 1000 degrees centigrade. Isothermal and anisothermal material coupon tests will be conducted on plate, weld and bolt material, whilst for the post fire condition, both air cooling and quenching will be considered. Upon determining the effect of temperature on material response, advanced FE models will be developed to establish the performance of double web cleat, top and seat angle cleat and extended endplate joints under and post fire conditions.

WP3 investigates the behaviour of individual joints under moment and shear and double sided joints under moment, shear and tension under static and dynamic loading conditions. Both physical tests and numerical models (utilising the findings of WP1) will be generated to characterise the joint response under realistic column loss scenarios. Supplementary numerical studies on geometrically identical conventional steel joints will also be conducted to compare the performance of the novel hybrid carbon/stainless steel and conventional steel joints.

WP4 will utilise all previous WPs to develop and calibrate spring joint models suitable for incorporation into FE simulations of frames using beam elements. Using OpenSees, low-, medium- and high-rise 3D steel frames employing the novel hybrid joints as well as conventional ones will be analysed under a variety of extreme hazard scenaria including impact and fire using a probabilistic approach for the variability in material, geometry and loading. The obtained results will be utilised to determine the probability of failure and derive analytical fragility curves and quantify the effect of the adoption of the novel connections on the survivability of steel framed structures.

Finally, WP5 will utilise all previous WPs to develop and disseminate design guidance to maximise the impact of the research. The close collaboration with leading consultants and strong links with BSI, as well as the applicants' close familiarity and involvement with Eurocode 3 will guarantee prompt dissemination of the research findings to the relevant practices, institutions and code development bodies.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.imperial.ac.uk