EPSRC logo

Details of Grant 

EPSRC Reference: EP/W018101/1
Title: Mixed Precision Symmetric Eigensolvers: Proof of Concept
Principal Investigator: Tisseur, Professor F
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Mathematics
Organisation: University of Manchester, The
Scheme: Standard Research - NR1
Starts: 01 July 2022 Ends: 30 June 2023 Value (£): 71,607
EPSRC Research Topic Classifications:
Continuum Mechanics
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
29 Sep 2021 EPSRC Mathematical Sciences Small Grants Panel September 2021 Announced
Summary on Grant Application Form
The numerical solution of algebraic eigenvalue problems is a key technology underpinning many areas of computational science and engineering, including acoustics, aeronautics, control theory, fluid mechanics, population modelling, quantum physics, robotics, and structural engineering. In all these areas, the need for fast and numerically reliable solution of eigenvalue problems arises. The problems can be large so that time to solution can be unacceptably long.

Modern hardware (multicore processors and accelerators such as graphics processing units (GPUs)) increasingly supports half precision floating-point arithmetics. These low precisions provide new opportunities to considerably accelerate linear algebra computations.

The research in this "small grant" proposal is a proof of concept for the next generation of efficient and numerically stable eigensolvers that exploit the different arithmetic precisions of modern hardware while maintaining numerical stability. Our investigation concentrates on the symmetric eigenvalue problem, for which eigenvalues are real with a full set of orthonormal eigenvectors, but any advances will have direct impact on future algorithms for nonsymmetric eigenproblems, generalized eigenproblems, and the singular value decomposition.

The algorithms will be developed as prototypes in MATLAB, using simulated half precision. Their numerical stability will be analyzed as well as their efficiency in terms of arithmetic costs and communications costs so as to determine which one(s) should be fully implemented in state of the art numerical linear algebra libraries such as the freely available matrix algebra on GPU and multicore architectures (MAGMA) library.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.man.ac.uk