EPSRC Reference: |
EP/W00299X/1 |
Title: |
Developing Molecular Quantum Technologies |
Principal Investigator: |
Cornish, Professor SL |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Physics |
Organisation: |
Durham, University of |
Scheme: |
Standard Research |
Starts: |
01 March 2022 |
Ends: |
28 February 2026 |
Value (£): |
1,656,645
|
EPSRC Research Topic Classifications: |
Cold Atomic Species |
Quantum Optics & Information |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Quantum Technologies promise to harness the power of quantum mechanics to deliver a new generation of devices whose performance surpasses what is possible with conventional technology. We can expect Quantum Technologies to deliver more powerful methods of computation, completely secure communication, enhanced metrology and sensors with unparalleled sensitivity. Accordingly, the development of Quantum Technologies has attracted substantial investments from national funding agencies worldwide, including in the UK and USA, as well as significant private investment in numerous start-up companies.
Many Quantum Technology platforms are being developed, including trapped ions, ultracold atoms, superconducting devices and photons, each with their own strengths and weaknesses. Compared to these more established technologies, ultracold molecules are new to the arena. And yet molecules have many advantages stemming from their rich internal structure of vibration and rotation, long-range dipole-dipole interactions and strong coupling to applied electric and microwave fields.
The goal of this proposal is to establish an international collaboration focused on overcoming the scientific and technical challenges that lie between our current experimental platforms and the realisation of molecular Quantum Technologies.
Our collaboration involves researchers from Durham University, Imperial College, Oxford University, Harvard University and JILA at the University of Colorado. Our team consists of 10 world-leading investigators, all of whom are embedded in internationally recognised centres of excellence for atomic, molecular and optical physics research. Each investigator brings complementary expertise spanning the experimental and theoretical methods needed to realise our vision. Over the last decade, we have all individually contributed to the transformation of the field of ultracold molecules. We have learned how to produce a wide range of molecular species at ultracold temperatures - the key first step necessary to reveal and access the quantum behaviour of molecules. Subsequently, we have learned to trap, manipulate and control individual molecules at the quantum level. With our molecules now under control and a wave of second-generation experimental platforms coming online, we are on the cusp of a new era for ultracold molecule research. Now is therefore the perfect time for us to join forces and coordinate our research effort in this flourishing field towards Quantum Technology.
Our specific research programme is organised around three major, inter-related goals. Firstly, we will learn to control molecule-molecule and atom-molecule collisions and interactions, enabling us to further cool our molecules deep into the quantum regime. Secondly, with our control of molecule-molecule interactions, we will create many-body quantum states of molecules in optical lattices suitable for quantum simulation of systems that are difficult to model on a classical device. Finally, we will learn how to engineer high-fidelity quantum gates between molecules held in optical tweezers - the essential building block of a molecule-based quantum computer.
Successful delivery of these ambitious research goals will establish ultracold molecules as a competitive Quantum Technology and will enhance the UK's leadership in this strategically important area.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
|