EPSRC Reference: |
EP/V05208X/1 |
Title: |
PARAMOR- Platform And Resource for Atomic, Molecular and Optical Research |
Principal Investigator: |
Brown, Dr AC |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Sch of Mathematics and Physics |
Organisation: |
Queen's University of Belfast |
Scheme: |
EPSRC Fellowship |
Starts: |
01 July 2021 |
Ends: |
30 June 2026 |
Value (£): |
668,309
|
EPSRC Research Topic Classifications: |
Gas & Solution Phase Reactions |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
The field of Atomic, Molecular and Optical (AMO) physics holds the promise of unlocking some of the deepest secrets of the universe. It straddles the gap between the mysterious, quantum world, and the world of chemistry which determines much of our lived experience. While several software tools exist to probe particular niches, there is only a very limited and uncoordinated effort to consolidate these disparate strands of development. In this project I will bring together my expertise in this scientific area with an ever-growing network of researchers therein to assemble a useable, sustainable and impactful toolset for researchers.
The main outcome of the project will be a computational package (PARAMOR) which is accessible to a large number of non-expert users, which may be developed sustainably by the community, and which will consolidate previously disparate development strands into a concerted effort. The package will run the most sophisticated high-performance AMO physics computer codes under the surface and provide a clean and easy-to-use interface to the user for designing and running simulations, and for processing and rendering their outputs.
The main impact will be to inaugurate a vibrant, global user-community of AMO physics codes that reverses the 'normal' tendency for scientific codes to stagnate, or become increasingly specialised, and create a truly sustainable and impactful resource for physics research generally. The current status-quo in AMO computational physics is for very gifted lone developers or small teams to build immensely complex and very capable software, which is practically inaccessible to outsiders. This project will thus act to bridge the gap and allow the potential impact of these separate efforts to be realised, as well as bringing the benefits of modern software development techniques into the AMO physics world.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.qub.ac.uk |