EPSRC Reference: |
EP/V000748/1 |
Title: |
From Sensing to Collaboration: Engineering, Exploring and Exploiting the Building Blocks of Embodied Intelligence - An EPSRC Programme Grant |
Principal Investigator: |
Posner, Professor I |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Engineering Science |
Organisation: |
University of Oxford |
Scheme: |
Programme Grants |
Starts: |
01 February 2021 |
Ends: |
31 January 2026 |
Value (£): |
5,994,620
|
EPSRC Research Topic Classifications: |
Artificial Intelligence |
Human-Computer Interactions |
Robotics & Autonomy |
|
|
EPSRC Industrial Sector Classifications: |
Manufacturing |
Transport Systems and Vehicles |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
07 Jul 2020
|
Programme Grant Interviews - 8 July 2020 (Element)
|
Announced
|
|
Summary on Grant Application Form |
Our robots are too specialised, too impoverished in their sensing, too uncooperative and too unsafe to be productive at scale. To contribute to productivity in strategically important areas such as social care, manufacturing, logistics, service, inspection or agriculture, future generations of robots need to be able to sense, interpret, act, navigate, coordinate and collaborate with an hitherto unprecedented acuity.
VISION: The overarching aim of this research programme is to deliver autonomous systems which amplify human capacity and potential. These robots must be capable of performing a broad array of bespoke tasks effectively, and with a minimum of operator intervention. In a sustainable national centre of excellence we will grow the technology and people substrate for robust embodied intelligence, i.e. the science and technology to enable robots to robustly and flexibly act, interact and collaborate in the real world.
STRATEGY: Our focus is on engineering, exploring and exploiting the building blocks of integrated embodied intelligence to deliver autonomous systems which, over the course of their life-time, acquire the sensing, perception, manipulation, navigation, collaboration and problem solving abilities required to allow them to operate unaided while significantly enhancing human productivity. We will significantly expand the reach and versatility of robots in domains of strategic and commercial value by exploiting synergies across research disciplines, which only emerge when deploying robot systems. In doing so we are driven by both fundamental science questions and real-world applications. Together with our partners, we have a clear scope in mind: versatile, collaborative robots whose societal and economic footprint is vast. Our work will underpin a national strategic aim with a carefully considered and coherent programme of research: from sensing to collaboration.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.ox.ac.uk |