EPSRC logo

Details of Grant 

EPSRC Reference: EP/T011424/1
Title: HADES: A User Facility for High Activity Decommissioning Engineering Science
Principal Investigator: Corkhill, Professor C
Other Investigators:
Thorpe, Dr CL Hand, Professor RJ
Researcher Co-Investigators:
Project Partners:
Department: Materials Science and Engineering
Organisation: University of Sheffield
Scheme: Standard Research - NR1
Starts: 06 January 2020 Ends: 05 May 2023 Value (£): 658,445
EPSRC Research Topic Classifications:
Energy - Nuclear
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
12 Aug 2019 National Nuclear User Facility Phase 2 2019 Announced
Summary on Grant Application Form
HM Government's civil nuclear energy policy has the threefold objectives of: exploiting nuclear power for low carbon, reliable and affordable electricity generation; decommissioning the legacy of historic nuclear fuel cycle activities; and safe disposal of radioactive wastes. Building on the Nuclear Industrial Strategy, the Nuclear Sector Deal set the vision for the civil nuclear sector, to deliver by 2030:

* 30% cost reduction in cost of new build projects

* Savings of 20% in cost of decommissioning compared with current estimates

* Up to £2bn domestic and international contract wins

The HADES Facility for High Active Decommissioning Engineering Science aims to play a pivotal role in realisation of these objectives through investment of a suite of equipment to enable fundamental and applied research in thermal treatment of radioactive wastes. Such technology utilises the application of heat to immobilise radionuclides and chemotoxic species within a passively safe product (a glass, slag or ceramic) suitable for interim storage and disposal. The benefits afforded by this approach are potentially game changing and include radical volume reduction and elimination of waste reactivity and organic inventory. The estimated lifecycle cost savings arising from successful implementation of thermal treatment technology in legacy nuclear decommissioning programmes are £billions in each of the UK and USA. Thermal treatment of radioactive wastes from future advanced recycle of nuclear fuels will reduce the environmental footprint of future nuclear generation, and reduce the associated waste management cost, through development of next generation materials for high level waste immobilisation, which are compatible with the challenging characteristics of such wastes and achieve a greater efficiency of waste incorporation. The technological developments achieved in these domains will realise new intellectual property and highly skilled human capital to grow the UK share of the legacy and future nuclear decommissioning market.

The HADES Facility, the only one of its kind in the UK, will enable this impact to be realised by creating unique infrastructure to handle large radioactive inventories and real radioactive wastes at the laboratory scale, to develop waveform formulation, process envelope, and product disposability to advance thermal treatment technology and enable timely implementation by current and future site licence companies. In so doing, we will nucleate grow a world leading community of practice, producing highly skilled user-researchers, through effective training and networking activities. Additionally, the unique capability established within the HADES Facility will be a beacon to attract and engage international collaboration, enabling us to pool research resources to address trans-national challenges in radioactive waste management and extending the reach of impact from the arising research beyond the UK.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.shef.ac.uk