EPSRC Reference: |
EP/T006390/1 |
Title: |
An X-ray Micro-Computed Tomography Facility with in-situ/in operando testing. |
Principal Investigator: |
Inkson, Professor B |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Materials Science and Engineering |
Organisation: |
University of Sheffield |
Scheme: |
Standard Research |
Starts: |
01 December 2019 |
Ends: |
31 May 2023 |
Value (£): |
1,175,201
|
EPSRC Research Topic Classifications: |
Biomaterials |
Design & Testing Technology |
Manufact. Enterprise Ops& Mgmt |
Manufacturing Machine & Plant |
Materials Characterisation |
|
|
EPSRC Industrial Sector Classifications: |
Aerospace, Defence and Marine |
Manufacturing |
Healthcare |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
There is a fundamental shift in materials technology towards manufacturing materials products which are tailor-made to specific dimensional requirements and function, and are inhomogeneous, i.e. having structure and chemistry which vary in 3D in a complex manner. It has become essential, therefore, to be able to employ characterisation methodologies that can effectively evaluate new materials/products in 3-dimensions, and to apply environments to determine how their structure, and therefore function, evolve with conditions.
X-ray computed tomography (MicroCT) is a powerful tool for non-destructively imaging the interior 3-dimensional microstructure of objects. Being well established in the medical field, MicroCT is playing an increasingly pivotal role in materials science and engineering research, and is now a core-technology on the EPSRC roadmap.
Very recent technological advances now make it possible for the first time to combine several crucial features of this technology in one instrument: a practically useful sample size (field of view), resolution of < 0.5 micrometre, and in-situ testing of samples while concurrently imaging the 3D microstructure.
The Zeiss Xradia 620 Versa is a state-of-the-art X-ray Microscope with innovative optics, optimised for 3D non-destructive imaging of heterogeneous composite materials. It is combined with various specialist specimen stages to allow mechanical, electrical, and fluid-based testing of materials in 3D.
Micro-scale computed tomography at the proposed advanced level will give researchers a massively improved insight into materials structures, enabling scientists and engineers to better characterise a diverse range of materials, such as aircraft components, new battery materials, human bone and tissue, new biomedical materials implants and other complex materials. This will allow researchers to develop materials that perform better than existing alternatives, making them lighter, less expensive, more robust and more sustainable.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.shef.ac.uk |