EPSRC Reference: |
EP/S031901/1 |
Title: |
Energy Revolution Research Consortium - Plus - EnergyREV - Market Design for Scaling up Local Clean Energy Systems |
Principal Investigator: |
McArthur, Professor S |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Electronic and Electrical Engineering |
Organisation: |
University of Strathclyde |
Scheme: |
Standard Research |
Starts: |
01 April 2019 |
Ends: |
31 March 2023 |
Value (£): |
475,036
|
EPSRC Research Topic Classifications: |
Sustainable Energy Networks |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
09 Oct 2018
|
ISCF Prospering from Energy Revolution
|
Announced
|
|
Summary on Grant Application Form |
Smart local energy systems offer the new opportunity to unlock valuable demand flexibility from owners of distributed energy technologies, such as electric vehicles, home batteries and heat-pumps. When combined with consumer-level ICT infrastructure, these resources allow previously passive consumers to become 'prosumers' - consumers who can proactively manage their consumption, production and storage of energy.
The smart local energy system demonstrators are expected to generate a range of local energy markets and platforms, offering new opportunities for prosumers to actively engage with the energy system. A wide variety of designs and business models for these markets and platforms are possible. Platforms are already operating that aggregate groups of prosumers and offer balancing services to National Grid. New markets for local flexibility services could enable prosumers to help manage voltage and thermal constraints, contributing to distribution system resilience. Markets for direct peer-to-peer energy trading have also been proposed, which would offer a win-win for prosumers, and the system as a whole, by facilitating the use of flexible resources to help match local supply and demand.
To ensure local energy markets create value locally, and can successfully scale up, energy market and regulatory arrangements will need adjustment. The major opportunity is for local energy markets to be integrated at the national scale, with clean local energy and flexibility reducing the need for large investments in generation and transmission infrastructure. Achieving this scale-up will require new market design frameworks and supporting technologies, with prosumer preferences and behaviours of central importance.
The project aims to answer the research question: "How can local and system-level energy markets be designed to successfully integrate local clean energy systems at the national scale?" High performance computing will be used for large-scale simulation, to study the interactions between local energy markets operating in parallel at different time scales and physical scales. This will facilitate the design of new local and system-level coordination mechanisms and policies, and allow their impact to be evaluated. The project will enhance the value offered by the Energy Revolution Research Consortium by providing novel insights and quantitative evidence which can be shared with the smart local energy system demonstrators as well as policy-makers.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.strath.ac.uk |