EPSRC Reference: |
EP/S022856/1 |
Title: |
EPSRC Centre for Doctoral Training in BioDesign Engineering |
Principal Investigator: |
Baldwin, Professor G |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Life Sciences |
Organisation: |
Imperial College London |
Scheme: |
Centre for Doctoral Training |
Starts: |
01 April 2019 |
Ends: |
30 September 2027 |
Value (£): |
7,293,638
|
EPSRC Research Topic Classifications: |
Catalysis & enzymology |
Synthetic biology |
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
Synthetic Biology is the underpinning discipline for advances in the UK bioeconomy, a sector currently worth ~£200Bn GVA globally. It is a technology base that is revolutionising methods of working in the biotechnology sector and has been the subject of important Government Roadmaps and supported by significant UKRI investments through the Synthetic Biology for Growth programme. This is now leading to a vibrant translational landscape with many start-ups taking advantage of the rapidly evolving technology landscape and traditional industries seeking to embed new working practices.
We have sought evidence from key industry leaders within the emerging technology space and received a clear and consistent response that there is a significant deficit of suitably trained PhDs that can bridge the gap between biological understanding and data science. Our vision is a CDT with an integrative training programme that covers experimentation, coding, data science and entrepreneurship applied to the design, realisation and optimisation of novel biological systems for diverse applications: BioDesign Engineers. It directly addresses the priority area 'Engineering for the Bioeconomy' and has the potential to underpin growth across many sectors of the bioeconomy including pharmaceutical, healthcare, chemical, energy, and food.
This CDT will bring together three world-leading academic institutions, Imperial College London (Imperial), University of Manchester (UoM) and University College London (UCL) with a wide portfolio of industrial partners to create an integrated approach to training the next generation of visionary BioDesign Engineers. Our CDT will focus on providing an optimal training environment together with a rigorous interdisciplinary program of cohort-based training and research, so that students are equipped to address complex questions at the cutting edge of the field. It will provide the highly-skilled workforce required by this emerging industry and establish a network of future UK Bioindustry leaders. The joint location of the CDT in London and Manchester will provide a strong dynamic link between the SE England biotech cluster and the Northern Powerhouse.
Our vision, which brings together a BioDesign perspective with Engineering expertise, can only be delivered by an outstanding and proven grouping of internationally renowned researchers. We have a supervisor pool of 66 world class researchers that span the associated disciplines and have a demonstrated commitment to interdisciplinary research and training. Furthermore, students will work directly with the London and Manchester DNA Foundries, embedding the next generation bioscience technologies and automation in their training and working practices.
Cohort training will be delivered through a common first year MRes at Imperial College London, with students following a 3-month taught programme and a 9-month research project at one of the 3 participating institutions. Cohort and industry stakeholder engagement will be ensured through bespoke training and CDT activities that will take place every 6 months during the entire 4-year span of the programme and include multi-year group hackathons, training in responsible research and innovation, PhD research symposia, industry research days, and entrepreneurial skills training.
Through this ambitious cohort-based training, we will deliver PhD-level BioDesign Engineers that can bridge the gap between rigorous engineering, efficient model-based design, in-depth cellular and biomolecular knowledge, high throughput automation and data science for the realisation and exploitation of engineered biological systems. This unique cohort-based training platform will create the next generation of visionaries and leaders needed to accelerate growth of the UK bioeconomy.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.imperial.ac.uk |