EPSRC logo

Details of Grant 

EPSRC Reference: EP/S021728/1
Title: EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing
Principal Investigator: Eichhorn, Professor S
Other Investigators:
Hamerton, Professor I Pirrera, Professor A
Researcher Co-Investigators:
Project Partners:
Airbus Operations Limited Centre for Process Innovation CPI (UK) CHOMARAT
Composites Leadership Forum Deakin University ELG Carbon Fibre Ltd.
FiberLean Technologies GKN Aerospace (Melrose) Harvard University
Heraeus Holdings GmbH Hexcel Composites Ltd Hong Kong University of Science and Tech
INSA Lulea University of Technology Massachusetts Institute of Technology
Nantes University Offshore Renewable Energy Catapult Oxford Space Systems
QinetiQ RMIT University Rolls-Royce Plc (UK)
Solvay Group (UK) Technical University of Dresden Texas A and M University
University of British Columbia (UBC) University of Delaware University of Leuven
University of Michigan University of Nottingham Vestas
Victrex plc Zhejiang University
Department: Aerospace Engineering
Organisation: University of Bristol
Scheme: Centre for Doctoral Training
Starts: 01 October 2019 Ends: 31 March 2028 Value (£): 6,652,519
EPSRC Research Topic Classifications:
Manufacturing Machine & Plant Materials Characterisation
Materials Processing
EPSRC Industrial Sector Classifications:
Aerospace, Defence and Marine Manufacturing
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
07 Nov 2018 EPSRC Centres for Doctoral Training Interview Panel I – November 2018 Announced
Summary on Grant Application Form
We will launch a new CDT, focused on composite materials and manufacturing, to deliver the next generation of composites research and technology leaders equipped with the skills to make an impact on society. In recent times, composites have been replacing traditional materials, e.g. metals, at an unprecedented rate. Global growth in their use is expected to be rapid (5-10% annually). This growth is being driven by the need to lightweight structures for which 'lighter is better', e.g. aircraft, automotive car bodywork and wind blades; and by the benefits that composites offer to functionalise both materials and structures. The drivers for lightweighting are mainly material cost, fuel efficiency, reducing emissions contributing to climate change, but also for more purely engineering reasons such as improved operational performance and functionality. For example, the UK composites sector has contributed significantly to the Airbus A400M and A350 airframes, which exhibit markedly better performance over their metallic counterparts. Similarly, in the wind energy field, typically, over 90% of a wind turbine blade comprises composites. However, given the trend towards larger rotors, weight and stiffness have become limiting factors, necessitating a greater use of carbon fibre. Advanced composites, and the possibility that they offer to add extra functionality such as shape adaptation, are enablers for lighter, smarter blades, and cheaper more abundant energy. In the automotive sector, given the push for greener cars, the need for high speed, production line-scale, manufacturing approaches will necessitate more understanding of how different materials perform.

Given these developments, the UK has invested heavily in supporting the science and technology of composite materials, for instance, through the establishment of the National Composites Centre at the University of Bristol. Further investments are now required to support the skills element of the UK provision towards the composites industry and the challenges it presents. Currently, there is a recognised skills shortage in the UK's technical workforce for composites; the shortage being particularly acute for doctoral skills (30-150/year are needed). New developments within industry, such as robotic manufacture, additive manufacture, sustainability and recycling, and digital manufacturing require training that encompasses engineering as well as the physical sciences. Our CDT will supply a highly skilled workforce and technical leadership to support the industry; specifically, the leadership to bring forth new radical thinking and the innovative mind-set required to future-proof the UK's global competitiveness. The development of future composites, competing with the present resins, fibres and functional properties, as well as alternative materials, will require doctoral students to acquire underpinning knowledge of advanced materials science and engineering, and practical experience of the ensuing composites and structures. These highly skilled doctoral students will not only need to understand technical subjects but should also be able to place acquired knowledge within the context of the modern world.

Our CDT will deliver this training, providing core engineering competencies, including the experimental and theoretical elements of composites engineering and science. Core engineering modules will seek to develop the students' understanding of the performance of composite materials, and how that performance might be improved. Alongside core materials, manufacturing and computational analysis training, the CDT will deliver a transferable skills training programme, e.g. communication, leadership, and translational research skills. Collaborating with industrial partners (e.g. Rolls Royce) and world-leading international expertise (e.g. University of Limerick), we will produce an exciting integrated programme enabling our students to become future leaders.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.bris.ac.uk