EPSRC Reference: |
EP/R025487/1 |
Title: |
"in vivo" Modification of Superconducting Quantum Electronic Circuits |
Principal Investigator: |
Meeson, Professor P |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Physics |
Organisation: |
Royal Holloway, Univ of London |
Scheme: |
Standard Research |
Starts: |
01 April 2018 |
Ends: |
30 September 2019 |
Value (£): |
2,206,800
|
EPSRC Research Topic Classifications: |
Materials Characterisation |
Materials Synthesis & Growth |
Quantum Optics & Information |
|
|
EPSRC Industrial Sector Classifications: |
No relevance to Underpinning Sectors |
|
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
The award funds a unique cryogenic nanofabrication tool with superior imaging capability and the possibility to modify quantum circuitry "in vivo". Based on the Zeiss ORION Nanaofabrication tool combined with innovative cryogenics in the few-Kelvin regime, the tool enables superconducting quantum circuitry to be modified in-situ with a focussed ion beam of Neon, allowing precision tailoring of component values and testing with radio frequency and DC probes in the superconducting state without the need to break vacuum. Such a prospect hugely enhances the potential for rapid development of prototype quantum devices and the quality with which they are selected for further testing, for example for further testing at milliKelvin temperatures or for commercial use. The imaging capabilities of the He-ion microscope will in addition support the recently funded world-class electron-beam-lithography system, the integrated tool being able to image and modify features of size less than 5 nm with 0.1 nm resolution while in the superconducting state.
Superconducting Quantum Technology is regarded worldwide as one of the key underpinning technologies for the construction of a quantum computer and for novel sensing and metrology applications.
Based on fabrication techniques used in semi-conductor processing, the creation of electrical circuits that operate according to the laws of quantum physics is astonishing in that the devices are the first man made objects (as opposed to natural entities such as atoms, electrons and photons) to display quantum effects. They are all the more fantastic because of their ability to be modified by design or construction in ways that naturally quantum objects cannot. As quantum electrical (qubit) circuits, they hold the potential to solve all of the problems of addressability, controllability, controlled qubit coupling and readout that many other architectures based on natural quantum objects find difficult. Major corporations such as Google, IBM and Raytheon are now investing in this field. The exploration and exploitation of a new generation of Superconducting Quantum Circuits including quantum meta-materials, coherent quantum phase slip (with consequent potential for a redefinition of the unit of electrical current, the Ampere), microwave quantum optics and quantum limited amplification as well as further development of multi-qubit devices are also key objectives of our research.
The new tool will be installed in the new nanofabrication facility at Royal Holloway, part of a UK Centre for Superconducting and hybrid Quantum Systems collaboration. We will build on our strong collaborations with the National Physical Laboratory and Lancaster University in a consortium that can offer Superconducting Quantum Circuit nanofabrication facilities to UK academics the field free of access charges. We were the first group in the UK to successfully establish a superconducting qubit foundry and we will build on our state-of-the-art capability with the aim of providing a streamlined route from science to technology. The new facility opens in summer 2018 and is also strongly involved in providing commercial superconducting device nanofabrication services. Our overall aim is to establish the UK as a world leader in superconducting quantum technology.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
|