EPSRC Reference: |
EP/R018480/1 |
Title: |
Application of Novel Nonlinear Data Modelling and Analysis to the Study of Cervical Impedance Spectroscopy for Preterm Birth Prediction |
Principal Investigator: |
Lang, Professor Z |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Automatic Control and Systems Eng |
Organisation: |
University of Sheffield |
Scheme: |
Standard Research |
Starts: |
01 July 2018 |
Ends: |
28 February 2022 |
Value (£): |
569,990
|
EPSRC Research Topic Classifications: |
Med.Instrument.Device& Equip. |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
30 Jan 2018
|
HT Investigator-led Panel Meeting - January 2018
|
Announced
|
|
Summary on Grant Application Form |
Every year, globally, about 15 million babies are born before 37 weeks. Preterm birth (PTB) complications are the leading cause of death of children under 5 years, causing 1 million deaths annually globally. PTB costs the UK NHS more than £1 billion annually, 10-fold higher than for term babies. As PTB is a major public health problem with profound implications on society, being able to identify women at risk of PTB during the course of their pregnancy is crucially important, so that care measures can be employed to delay birth to reduce potential long-term disability and impairment. However, accurate identification of women at risk for prevention and mitigation remain illusory. The fundamental problem with current screening approaches is that they are unable to assess and quantify cervical tissue composition, neither are they able to discriminate the various clinical conditions that are associated with PTB.
For PTB to occur, the cervix must soften and dilate through a series of remodelling events at a molecular level. Based on this observation, a team of doctors and scientists led by Prof Dilly OC Anumba at Sheffield have revealed that women who are at high risk of PTB have lower resistance in their cervix in mid-pregnancy than women who deliver at term. This discovery motivated the MRC ECCLIPPxTM project where the Sheffield Mark V Electrical Impedance Spectroscopy (EIS) device was successfully investigated to quantify cervical remodelling remote from birth to predict PTB in a group of about 500 pregnant patients. The study has shown that EIS measured at 20-22 weeks predicts PTB (birth before 37 weeks gestation) with a sensitivity of ~70% and a specificity of ~80%. This promising performance was based only on a single derived parameter - tissue resistance over some discrete frequencies - and employed linear logistic and conventional statistical analysis. However, cervical tissue electrical properties are literally represented by the tissue impedance over a wide range of frequencies, which has both a real and an imaginary part known as resistance and reactance, respectively, and can also involve the effects of nonlinearities. Therefore, comprehensively correlating all EIS screening data parameters with PTB and taking into account possibly more complicated nonlinear associations could further improve the accuracy of PTB prediction.
Motivated by these considerations, Profs Dilly OC Anumba and ZQ Lang established a collaboration which has preliminarily employed data modelling and model analysis techniques developed by Prof ZQ Lang's team to analyse the tissue impedance data over a wider range of frequencies. They have then produced a nonlinear logistic regression model which uses a nonlinear combination of the amplitude and phase of EIS impedance to predict PTB. The application of this model to a subset of the EIS data from 33 patients has achieved better PTB prediction with a sensitivity of 82% and a specificity of 85%. The encouraging outcome of this early scoping study informs this proposal.
In this project, we propose to employ advanced data processing, modelling, and analysis uniquely developed in the Department of Automatic Control and Systems Engineering at the University of Sheffield to enhance the extraction of PTB related features enabled by the pioneering Sheffield cervical impedance spectroscopy-based PTB screening devices. We will develop a novel nonlinear logistic analysis to integrate the cervical impedance spectroscopy features, demographic data, and other clinically available observations for a more informed, clinically explainable, and significantly improved PTB prediction. The achievements will be demonstrated by prediction of PTB for 700 women who will have been studied by cervical impedance spectroscopy-based PTB screening at the Sheffield Teaching Hospitals (STH) NHS Foundation Trust.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.shef.ac.uk |