EPSRC Reference: |
EP/P009050/1 |
Title: |
Elucidation of membrane interface chemistry for electro-chemical processes |
Principal Investigator: |
Holmes, Professor S |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Chem Eng and Analytical Science |
Organisation: |
University of Manchester, The |
Scheme: |
Standard Research |
Starts: |
01 March 2017 |
Ends: |
31 August 2021 |
Value (£): |
1,675,667
|
EPSRC Research Topic Classifications: |
Electrochemical Science & Eng. |
Fuel Cell Technologies |
Materials Characterisation |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
13 Sep 2016
|
EPSRC Physical Sciences - September 2016
|
Announced
|
|
Summary on Grant Application Form |
Fuel cells have been promoted as a pollution free alternative for energy generation. However, there are several constraints, based around the materials used, which have limited the implementation of this technology. This proposal provides the understanding of the chemical processes occurring in the materials and at the interfaces between the materials which drive the technology and the changes this chemistry causes to the materials. This will enable the design of fuel cell systems and choice of materials to mitigate these changes which reduce performance.
The electro-chemical processes which occur in fuel cells (both high and low temperature systems) are not unique to this technology and to demonstrate the efficacy of the study across all temperature ranges (from room temperature to 1200oC) we will also look at the separation of CO2 using dual phase membranes. While still an emerging technology, these membranes encounter similar problems to fuel cells and are extremely exciting as potential short term solutions for existing energy generation systems where CO2 is generated.
Several extremely powerful, cutting edge, analytical techniques are available which when applied in real time will allow the observation of the chemistry at atomic level. As a consequence the changes caused by operation of the system can be identified and explained. This project couples the application of existing state-of-the-art techniques with the development of these techniques where necessary to allow researchers to follow the changes as the chemical transformation of fuels into power, or CO2 separation, occur.
The potential benefit of this work is that the route to market for all three technologies will be enhanced by a deeper understanding of the chemistry. Hence, the environmental potential of the adoption of these systems will be realised. In addition, the ability to follow processes within working systems will be of great interest to the scientific community working in parallel disciplines such as the design of barriers to prevent corrosion.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.man.ac.uk |