EPSRC logo

Details of Grant 

EPSRC Reference: EP/N020707/1
Title: Sincere: Selective ion-conductive ceramic electrolytes
Principal Investigator: Aguadero, Dr A
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Johnson Matthey University of Cambridge University of Oxford
University of Southampton
Department: Materials
Organisation: Imperial College London
Scheme: First Grant - Revised 2009
Starts: 01 July 2016 Ends: 30 June 2017 Value (£): 98,536
EPSRC Research Topic Classifications:
Energy Storage
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
09 Feb 2016 Engineering Prioritisation Panel Meeting 9 and 10 February 2016 Announced
Summary on Grant Application Form
Li-stuffed garnet electrolytes are poised to provide a breakthrough in battery technology since they can deliver the adequate Li-conductivity and the safety and cycle life required for the commercialisation of high-energy density batteries (i.e. high voltage Li-ion and Li-metal batteries). However, these garnet electrolytes, if they are not processed properly, suffer from severe moisture-sensitivity that leads to drastic degradation of their transport and microstructural properties - a problem that has not been universally recognised in the field. This fast degradation, which occurs even at room temperature, has so far hindered fundamental studies aimed at identifying and optimising the modes of lithium transport within the crystal lattice and the grain boundaries. Furthermore, measurements of the interfacial resistances reflect those of the decomposition products, rather than the intrinsic properties of the garnets themselves. We have developed a unique t setup that will allow a strict control of the moisture during the processing and characterization of the garnets. Our work, to date, has shown a three-fold enhancement in lithium-ion conductivity, if the degradation-related problems are addressed. The aim of this project is threefold: a) Reveal the optimum intrinsic Li-mobility in Li7-nxAxV(n-1)xLa3Zr2O12 (V = lithium vacancy) garnets b) Investigate the electrode/garnet interfaces and c) Analyse the degradation under moisture-controlled conditions to evaluate the potential use of the garnets in Li-air cells.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.imperial.ac.uk