EPSRC Reference: |
EP/M029573/1 |
Title: |
Newton Fund-Integrating water cooled concentrated photovoltaics with waste heat reuse |
Principal Investigator: |
Balabani, Professor S |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Mechanical Engineering |
Organisation: |
UCL |
Scheme: |
Standard Research |
Starts: |
01 January 2015 |
Ends: |
31 March 2017 |
Value (£): |
72,518
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
01 Dec 2014
|
RCUK Brazil 2014
|
Announced
|
|
Summary on Grant Application Form |
Highly concentrated photovoltaic (HCPV) systems exploit concentrated solar flux using cheap optical components in lieu of large area, expensive photovoltaic cells. However, HCPV chips - due to their higher energy flux - generate considerable amount of waste heat which lowers their energy conversion efficiency. Novel microscale water cooling systems (i.e. microfluidic chips) can effectively regulate the photovoltaics cell temperature, thereby enhancing the cell energy efficiency. Additionally, the heat extracted by the coolant can be reused in:
a. Food and Pharmaceutical stage: to run an absorption refrigeration unit (where evaporation of a working fluid causes cooling) for food preservation and storage of vaccines, that require considerable energy use.
b. Water: membrane based water desalination processes to make saline water suitable for domestic and agricultural use
c. Fuel: for efficient production biodiesel
Integrating water cooled HCPV systems with one or more of these waste heat recovery technologies can have major positive impact on water, energy, food, healthcare and environmental challenges faced by Brazil - this is very well-aligned with the 'Food energy water environment nexus' theme.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
|