EPSRC Reference: |
EP/M022234/1 |
Title: |
BIOTRANSFOROMICS: Bioanalysis to Engineer Understanding in Wastewater Treatment |
Principal Investigator: |
Gomes, Professor RL |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Div of Process and Environmental Eng |
Organisation: |
University of Nottingham |
Scheme: |
First Grant - Revised 2009 |
Starts: |
01 October 2015 |
Ends: |
12 February 2018 |
Value (£): |
99,751
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
The wastewater treatment process (WWTP) plays a critical role in providing clean water. However, emerging and predominately unregulated, bioactive chemicals such as steroids and pharmaceutical drugs are being increasingly detected in surface waters that receive wastewater effluent. Although present at low concentrations, their inherent bioactive nature has been linked to abnormalities in aquatic organisms and there are also water reuse and human health implications. As part of the urban water cycle, the WWTP is the gatekeeper to the surface waters e.g. rivers. Pharmaceuticals enter wastewater treatment from inappropriate disposal of unused drugs to the sink/toilet or via landfill. Prescribed or illicit drug use also has the inevitable consequence of being metabolised in the human body (to parent, Phase I / II metabolites) and excreted in urine, which subsequently enters the WWTP. Coupled with naturally produced and excreted bioactive steroids, the challenge for wastewater treatment is that it was never designed to remove these bioactive chemicals and is inefficient.
Evaluating the prevalence and fate of a steroid or pharmaceutical in the WWTP is challenging as human enzymatic metabolism causes the bioactive chemical to exist in multiple forms - parent, Phase I and Phase II metabolites. Phase II metabolites predominate urine excretion and are the starting products entering the wastewater environment. They therefore act as the precursors to the biotransformations that take place during treatment and produce the Phase I and/or parent forms of the bioactive chemical. Before treatment technologies can be developed and evaluated for pharmaceutical and steroid removal in the WWTP, our understanding needs to improve on how the different bioactive chemical forms behave, and their relationships to each other. This means identifying the biotransformations between metabolites and parent forms. To achieve this requires a move from targeted analysis - we analyse for what we expect to see - to develop methods that are non-targeted and search for Phase II metabolites and their associated Phase I / parent forms.
Drawing on inspiration from metabolomics approaches used in the biosciences, the aim of this proposal is to develop a novel non-target method to identify bioactive chemical Phase II metabolites and their biotransformation products in wastewater. Knowledge of Phase II metabolite occurrence and fate in the wastewater environment is important in assessing the impact of user behaviour, process and environmental factors or bioactive chemical parent removal. This will inform on WWTP efficiency, provide data for optimising models that predict pharmaceuticals and steroids, and evaluate environmental risk.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.nottingham.ac.uk |