EPSRC Reference: |
EP/M018466/1 |
Title: |
Diffusion Bonding Titanium Alloys to Stainless Steels |
Principal Investigator: |
Shirzadi, Dr A |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Faculty of Sci, Tech, Eng & Maths (STEM) |
Organisation: |
The Open University |
Scheme: |
Standard Research - NR1 |
Starts: |
01 May 2016 |
Ends: |
31 December 2017 |
Value (£): |
30,890
|
EPSRC Research Topic Classifications: |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
28 Jan 2015
|
UK India Civil Nuclear Energy 3
|
Announced
|
|
Summary on Grant Application Form |
Background: Advanced engineering components for modern sustainable society require not only better materials but also new joining or welding processes. A critical topic for the advent of the next generation of nuclear reactors is the development of improved methods for joining dissimilar alloys. Due to the high temperatures inherent in fusion welding processes, the use of these methods for joining certain dissimilar alloys, e.g. Titanium and Stainless Steels, has proved unsuccessful. Gallium-assisted diffusion bonding is an award-winning new method, invented by the proposer (PI), for joining the advanced alloys and composites that cannot be welded using conventional processes.
Previous results: The outcome of research carried out under the EPSRC's Indo-UK Civil Nuclear Programme research project "JOINT" (Grant EP/I01215X/1) has proved very promising. High strength joints between Titanium and Stainless Steels were produced using gallium-assisted diffusion bonding as well as active brazing processes leading to publication of several joint papers by the UK and India partners.
Proposed research: The quality of Titanium to Stainless Steel joints made using Gallium-assisted diffusion bonding processes will be studied where the process conditions are systematically varied. This will allow the bonding conditions to be optimised for strength and integrity. The bonded samples will be subjected to careful microstructural characterisation in India and larger samples made for mechanical testing. Results from the research programme will be published in peer-reviewed journals.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
|