EPSRC Reference: |
EP/L505262/1 |
Title: |
Practical Lithium Air Batteries |
Principal Investigator: |
Jacquemin, Dr JGP |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Sch of Chemistry and Chemical Eng |
Organisation: |
Queen's University of Belfast |
Scheme: |
Technology Programme |
Starts: |
01 November 2013 |
Ends: |
31 October 2016 |
Value (£): |
373,831
|
EPSRC Research Topic Classifications: |
Electric Motor & Drive Systems |
Energy Storage |
|
EPSRC Industrial Sector Classifications: |
Energy |
Transport Systems and Vehicles |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
This project is centred around the development of a practical lithium air battery single cell with improved performance. The
project consortium includes Queens University Belfast and Liverpool University as academic partners and Johnson
Matthey, Axeon, JLR and Air Products as the industrial partners.
The instability of existing electrolytes to superoxides is a major barrier to achieving good cycle life in current laboratory
scale Li-air cells, due to capacity fade as a result of the formation of irreversible species from solvent decomposition that
occurs if current Lithium ion battery organic electrolytes are used. Therefore, significant effort will focus on synthesising
novel electrolytes capable of surviving operation in Li-air batteries, where a large operational voltage window and immunity
to degradation from superoxide attack are key features, combined with practical levels of oxygen solubility and ionic
conductivity. Novel ionic liquid electrolytes and blends will be synthesised using the expertise at QUB and also drawing on
empirical and modelling results already available in the literature, relating to solvent stability in the presence of superoxide.
Novel anode and cathode materials and catalysts will be prepared and tested (JM) in combination with improved
electrolytes synthesised in the project (JM). Emphasis will also be placed on optimising cathode structures for the novel
electrolytes to achieve improved capacity, current density and cycle life (JM, Axeon). Understanding the cathode reactions
oxygen reduction during discharge and oxygen evolution during charge with new electrolytes via iR and Raman
spectroelectrochemistry techniques will be undertaken (Liverpool University) and the behaviour at the anode interface in
the novel electrolytes will also be explored. The wide variety of analytical techniques available via the different project
partners including XPS, ATR, electron microscopy and electrochemical measurements will be applied within the project.
Cell testing studies will investigating the effects of various parameters, pressure, temperature , charge rate, the effect of
carbon dioxide and water impurities in inlet air and possible inlet air clean up strategies also be considered (JM, Axeon, Air
Products, JLR).
The key outputs from the project will be an optimised single cell configuration with the best electrolyte, electrode material
and electrode structure combination, accompanied by understanding of the electrochemistry and the effect of cathode
structure and test parameters on battery performance and cyclability. These data contribute toward establishing the
feasibility of lithium air battery technology and will lay a firm foundation for future development of larger scale
demonstration systems .
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.qub.ac.uk |