EPSRC logo

Details of Grant 

EPSRC Reference: EP/L021978/1
Title: Multicomponent Supramolecular Hydrogels
Principal Investigator: Adams, Professor DJ
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Aston University Johns Hopkins Medicine (JHM) Knowledge Centre for Materials Chemistry
University of Bath University of Greenwich University of Sussex
Department: Chemistry
Organisation: University of Liverpool
Scheme: EPSRC Fellowship
Starts: 31 December 2014 Ends: 30 September 2016 Value (£): 1,240,595
EPSRC Research Topic Classifications:
Complex fluids & soft solids Materials Synthesis & Growth
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
03 Sep 2014 EPSRC Physical Sciences Fellowships Interview Panel 3rd, 4th and 5th Sept 2014 Announced
23 Jul 2014 EPSRC Physical Sciences Materials - July 2014 Announced
Summary on Grant Application Form
The vision of this fellowship is to develop the requisite understanding of multicomponent low molecular weight gels such that they can be used for practical applications in energy, complementing the growing body of work on the use of these systems in medicine and drug delivery. Multicomponent gels offer significant new opportunities in terms of generating useful and exciting new structures. Specifically in this fellowship, we will develop conductive materials, as well as bulk heterojunctions, using low molecular weight gelators. This requires specific assembly of multiple components with careful control over the assembly across many length-scales. The aim here is to develop effective solar cells in an unprecedented way.

Currently, multicomponent systems are rare and introduce significant complexity and questions: for example, do the components mix, specifically or randomly, or do they self-sort, to create assemblies of one pure component co-existing with pure assemblies of the other? Also, once the primary assembly has occurred, how are these structures distributed in space? Do they interact randomly, or can specific, higher-order structures be formed? Such questions are fundamental to the development of technology such as solar cells, where energy transfer between the molecular components is core to their function. A particular challenge here is to guide multicomponent self-assembling systems across many length-scales, precisely positioning individual molecules or assemblies within well organised, highly-ordered structures in order to achieve a reproducible, highly-controlled network.

Here, I focus on a class of low molar mass gelators with which I have significant experience. I will develop a thorough understanding of the conditions under which gelation occurs for each component to prepare gels where components are specifically located. For success, I will develop systems consisting of two LMWG containing aromatic groups whose spectral adsorptions complement each other with appropriate HOMO and LUMO levels. I will develop methods to ensure that well-ordered self-sorted structures are formed, which entangle to form structures with a suitable interface. This requires control over assembly across multiple length-scales. The main challenges here focus on ensuring the microstructure is correct and that the percolation paths are ideal. There is limited understanding for single LMWG systems, let alone for two-component systems. As such, this work will take the area significantly beyond the current state of the art and also provides a new application for these materials through their development for solar cell technology.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.liv.ac.uk