EPSRC Reference: |
EP/K023004/1 |
Title: |
Energy and the Physical Sciences: Hydrogen Production using a Proton Electron Buffer |
Principal Investigator: |
Cronin, Professor L |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
School of Chemistry |
Organisation: |
University of Glasgow |
Scheme: |
Standard Research |
Starts: |
30 September 2013 |
Ends: |
29 September 2017 |
Value (£): |
366,690
|
EPSRC Research Topic Classifications: |
Catalysis & Applied Catalysis |
Materials Characterisation |
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
05 Dec 2012
|
EPSRC Physical Sciences Materials - December 2012
|
Announced
|
|
Summary on Grant Application Form |
We propose to develop 'proton-electron-buffers' (PEBs) using redox-active polyoxometalate (POM) clusters that will be able, for the first time, to address the problem of simultaneous oxygen and hydrogen production during the electrolysis of water. It is anticipated that the use of a PEB in the water-splitting reaction will allow new catalysts, electrodes, and device architectures to be employed in electrolysers, and we will investigate both these new designs and the use of PEBs with exisiting electrolyser technology. Using a PEB in an electrolyser could also bring significant advantages with regards to intermittent power supplies (such as renewables) by reducing the instantaneous voltages required for electrolysis to occur. There could also be significant advantages In addition to exploring water splitting through the paradigm of the proton-electron-buffer, we will also explore the use of reduced polyoxometalate clusters as an intermediate "fuel source", by reacting the reduced PEBs with reducible chemical substrates to produce storable fuels. Thus this work could pave the way to a totally new route to 'clean' low-carbon H2 production temporally separated from the production of oxygen, as well as reducing energy consumption through technological advances informed by a whole system understanding as highlighted by the RCUK Energy Programme.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.gla.ac.uk |