EPSRC logo

Details of Grant 

EPSRC Reference: EP/K014897/1
Title: Bio-derived Feedstocks for Sustainable, UK-Based Manufacture of Chemicals and Pharmaceutical Intermediates
Principal Investigator: Lye, Professor G
Other Investigators:
Leak, Emeritus Professor D Hailes, Professor HC Dalby, Professor PA
Sheppard, Professor TD Kontoravdi, Professor C Ward, Professor JM
Shah, Professor N
Researcher Co-Investigators:
Project Partners:
Almac Group Ltd AstraZeneca Biocatalysts Ltd
British Sugar PLC Centre for Process Innovation CPI (UK) Chemistry Innovation
Chemoxy International Ltd GlaxoSmithKline plc (GSK) Ingenza Ltd
Siemens TMO Renewables Ltd
Department: Biochemical Engineering
Organisation: UCL
Scheme: Standard Research
Starts: 01 February 2013 Ends: 30 April 2018 Value (£): 1,923,246
EPSRC Research Topic Classifications:
Catalysis & Applied Catalysis Chemical Biology
Design Processes
EPSRC Industrial Sector Classifications:
Chemicals
Related Grants:
Panel History:
Panel DatePanel NameOutcome
16 Oct 2012 EPSRC Sustainable Chemical Feedstocks Announced
Summary on Grant Application Form


The chemical and pharmaceutical industries are currently reliant on petrochemical derived intermediates for the synthesis of a wide range of valuable products. Decreasing petrochemical reserves and concerns over costs and greenhouse gas emissions are now driving the search for renewable sources of organic synthons. This project aims to establish a range of new technologies to enable the synthesis of a range of chemicals from sugar beet pulp (SBP) in a cost-effective and sustainable manner. The UK is self-sufficient in the production of SBP which is a by-product of sugar beet production (8 million tonnes grown per year) and processing. Currently SBP is dried in an energy intensive process and then used for animal feed. The ability to convert SBP into chemicals and pharmaceutical intermediates will therefore have significant economic and environmental benefits.

SBP is a complex feedstock rich in carbohydrate (nearly 80% by weight). The carbohydrate is made up of roughly equal proportions of 3 biological polymers; cellulose, hemicellulose and pectin. If the processing of SBP is to be cost-effective it will be necessary to find uses for each of these substances. Here we propose a biorefinery approach for the selective breakdown of all 3 polymers, purification of the breakdown compounds and their use to synthesise a range of added value products such as speciality chemicals, pharmaceuticals and biodegradable polymers. It is already well known that cellulose can be broken down into hexose sugars and fermented to ethanol for use in biofuels. Here we will focus on the release of galacturonic acid (from pectin) and arabinose (from hemicellulose) and their conversion, by chemical or enzymatic means, into added value products. We will also exploit the new principles of Synthetic Biology to explore the feasibility of metabolically engineering microbial cells to simultaneously breakdown the polymeric feed material and synthesise a desired product, such as aromatic compounds, in a single integrated process.

In conducting this research we will adopt a holistic, systems-led, approach to biorefinery design and operation. Computer-based modelling tools will be used to assess the efficiency of raw material, water and energy utilisation. Economic and Life Cycle Analysis (LCA) approaches will then be employed to identify the most cost-effective and environmentally benign product and process combinations. The project is supported by a range of industrial partners from raw material producer to intermediate technology providers and end-user chemical and pharmaceutical companies. This is crucial in providing business and socio-economic insights regarding the adoption of renewable resources into their current product portfolios. The company partners will also provide the material and equipment resources for the large-scale verification of project outcomes and their ultimate transition into commercial manufacture.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: