EPSRC Reference: |
EP/J014958/1 |
Title: |
Molecular Systems Engineering of High-Value Structured and Formulated Products |
Principal Investigator: |
Jackson, Professor G |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Chemical Engineering |
Organisation: |
Imperial College London |
Scheme: |
Platform Grants |
Starts: |
30 November 2012 |
Ends: |
29 November 2017 |
Value (£): |
1,535,483
|
EPSRC Research Topic Classifications: |
Catalysis & Applied Catalysis |
Design of Process systems |
Particle Technology |
|
|
EPSRC Industrial Sector Classifications: |
Chemicals |
Pharmaceuticals and Biotechnology |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
The focus of research in Molecular Systems Engineering is the development of methods and tools for the design of better products and processes in applications where molecular interactions play a central role. To date we have developed a successful activity focussed mostly on large-scale gas-liquid processes. A strategic objective of this proposal is to make a leap to the more challenging high-value manufacturing arena, where formulated and structured products are prevalent. The combination of fundamental physical understanding, mathematical models, and numerical methods is the cornerstone of our approach. It allows us to reduce our dependence on rules-of-thumb which have traditionally been used to make models tractable but which have a limited validity. The success of this approach is strongly dependent upon the ability to exploit the synergies between molecular modelling and process engineering, as we have demonstrated in the design of novel processes for carbon dioxide capture from natural gas. Our team of investigators and RAs will be ideally positioned to overcome the challenges posed by high-value products and processes thanks to its current expertise, the investment we have made in breaking down the barriers to interdisciplinary work, and the new skills, continuity and flexibility afforded by a platform grant.
An overriding objective of the platform grant is to fast-track the careers of the individual researchers involved. Supporting the careers of researchers has always been central to our approach to research. This grant will give us a unique ability to push this further by providing us with the resources and critical mass to put in place a more structured development programme.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.imperial.ac.uk |