EPSRC logo

Details of Grant 

EPSRC Reference: EP/J007242/1
Title: Optimal Design of Drug Eluting Stents
Principal Investigator: McKee, Professor S
Other Investigators:
WHEEL, Dr M McCormick, Dr C
Researcher Co-Investigators:
Project Partners:
Department: Inst of Pharmacy and Biomedical Sci
Organisation: University of Strathclyde
Scheme: Standard Research
Starts: 01 April 2012 Ends: 30 September 2015 Value (£): 548,344
EPSRC Research Topic Classifications:
Continuum Mechanics Drug Formulation & Delivery
Med.Instrument.Device& Equip. Numerical Analysis
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
EP/J007579/1
Panel History:
Panel DatePanel NameOutcome
03 Nov 2011 Materials, Mechanical and Medical Engineering Announced
Summary on Grant Application Form
Coronary artery disease is the most common type of heart disease and the number one leading cause of death in Europe and North America. It is estimated to cost the public purse over £3.5 billion per annum in the UK alone. The disease arises from atherosclerosis, in which fatty deposits build up on the walls of the blood vessels (arteries) that supply the heart itself. These deposits can narrow the artery and reduce blood flow to the heart. This may lead to angina or a heart attack. Severely narrowed arteries are often treated by insertion of a stent which is an expandable metal meshwork tube that opens up the blocked artery. The performance of these stents is improved by covering them with a layer that gradually releases a drug to moderate the wound-healing reaction of the artery wall. Without the drug coating, many patients experience a growth of tissue around the stent that can narrow the artery again. The timing and extent of release of the drug from the stent into the artery wall is critical. If drug release is inadequate then tissue growth occurs and the artery becomes blocked; however if drug release is excessive then there is a problem for the repair of the important inner lining of the artery, called the endothelium. If there is endothelial damage this increases the risk of late thrombosis. Failure of endothelial regrowth is especially critical over the metal struts of the stent, where drug concentration is highest. Thus correct performance of the drug-eluting stent depends on accurate delivery of an effective, but non-toxic, drug profile. Drug-release profiles of currently available drug-eluting stents have been derived empirically; however the use of mathematical modelling principles will enable the design of improved release profiles and should lead to improved performance and fewer adverse effects.

In this project we will develop a mathematical model that will be more realistic than previous models. It will be based more closely on the structure and composition of a diseased artery such as would be present in patients who are receiving a drug-eluting stent. Moreover our mathematical model will be more sophisticated than previous models because it will incorporate information about the errors associated with the various measurements that need to be made. We shall make accurate determinations, using the actual drugs that are used to treat patients, to find out how they move through the artery wall. We shall show that our model works correctly by measuring the performance of a stent that we have designed. The current project will utilise the best available methods to create a much more accurate and predictive model that, for the first time, will allow a stent to be designed with the assistance of a model and not solely empirically.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.strath.ac.uk