EPSRC logo

Details of Grant 

EPSRC Reference: EP/J005436/1
Title: Common threads in the theories of Local Cohomology, D-modules and Tight Closure and their interactions
Principal Investigator: Katzman, Dr M
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Mathematics and Statistics
Organisation: University of Sheffield
Scheme: Standard Research
Starts: 01 September 2012 Ends: 31 August 2015 Value (£): 226,468
EPSRC Research Topic Classifications:
Algebra & Geometry
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
05 Sep 2011 Mathematics Prioritisation Panel Meeting September 2011 Announced
Summary on Grant Application Form
Many theorems in Commutative Algebra can be proved by showing that:

(1) if the theorem fails, one can find a counter-example in a ring of prime characteristic p (i.e., a ring which contains the ring of integers modulo a prime number p), and

(2) no such counter-example exists in characteristic p.

Step (2) above is often much easier to prove than in characteristic zero because of the existence of the Frobenius function f(r) which raises r to the pth power. This functon is an endomorphism of the rings, i.e., it has the property that f(r+s)=f(r)+f(s), and surprisingly, gives a good handle on many problems in characteristic p.

During the course of development of the study of commutative rings of prime characteristic, various notions and techniques were introduced, e.g., a certain tight-closure operation of ideals, certain structures on ``large'' objects called local cohomology modules, and differential operators acting on these rings. The objects and their associated techniques have proved to be very successful in tackling algebraic and geometric problems, and the interactions between these concepts turned out to be especially fertile.

I propose to study these interactions further with the aid of a research assistant, and to apply the resulting techniques to the solution of several outstanding problems in my field.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.shef.ac.uk